PIC16F87/88 Interrupts

An Interrupt is a specific event that can interrupt the main program allowing you to
immediately go off and perform some service routine before continuing on with the
main program. The PIC16F87/88 has 12 sources of interrupt events, most of them
associated with the micro’s peripheral devices such as the Timers, Serial
Transmitter/Receivers, Analog to Digital Converter.

Each of the 12 interrupt sources has an Enable bit which, when set high, will enable
the main program to be interrupted when that interrupt event occurs. When the
Enable bit is cleared to low, the event can still happen but it will not trigger the
Interrupt routine to start up, interrupting the main program.

Each of the 12 interrupt sources also has a Flag bit. A high Interrupt Flag indicates
that the Interrupt Event has occurred and needs to be serviced. A low Interrupt Flag
indicates that the event has not ocurred yet. When several interrupt sources are
enabled, the programmer would start off the interrupt service code by polling these
interrupt flags to see which event happened. Flags are usually cleared by the
programmer in software before exiting the interrupt routine.

There is also a “Global Interrupt Enable”,GIE (INTCON bit 7) bit. This bit is used to
enable or disable all 12 interrupts at once. Therefore, to enable any particular
interrupt, the GIE bit must be set high as well as the individual interrupt enable bit.
At the start of the interrupt service routine, the GIE bit is automatically disabled
(cleared to low) to prevent any other interrupts from happening while servicing the
interrupt. Then, at the end of the interrupt service routine the GIE bit is
automatically enabled again (set high).

All the Peripheral device interrupts also have a global type enable bit called the PEIE
(INTCON bit 6) which must be set high to enable any pheripheral device interrupt.

On Reset or Power-up the PIC16F87/88 will jump to memory location 0x0000 in the
program memory space and start executing the program that lives there. Similarly,
when an interrupt event occurs and any of the Interrupts are enabled along with the
GIE bit, the processor will immediately stop executing the current program, jump to
memory location 0x0004 and start executing the program that lives there. This
vectored address behavior requires your assembly code to have something like the
following at the very beginning of the code:

org 0x00
goto main_program
org 0x04

goto interrupt_routine

The first line directs the assembler to move to the top of the program memory space
(0x00). The second line is the code that will be loaded into this program memory
space. Itis usually a goto command followed by the memory location labeled
“main_program” (or any other label you choose to give it), a pointer to where the
main startup program begins. There is little room for any code more than a goto
here since we immediately bump up against the interrupt vector address of 0x04
which must be filled with directives for the interrupt routine. Here, the location
0x04 is filled with another goto command followed by the location of the interrupt
routine labeled “interrupt_routine” (or any other label you choose to give it).

Whenever an enabled interrupt event occurs the following happens. The current
program is halted and the program counter is saved so that the current program can
later be continued from where it stopped. The GIE bit is cleared, to prevent any new
interrupt events from interrupting the interrupt routine. The processor then jumps
to the interrupt handler vector, the program starting at address 0x04. In the code
example above there is an immediate goto command to jump to an interrupt
handling routine.

For more involved programs, the programmer might want to start the interrupt
routine with a save of important registers, like the w, STATUS, PCLATH - any
registers that are used by both the interrupt handler and the main program. Do not
worry about the program counter; it is automatically saved. An example of code
that does this is shown below. Remember that if the interrupt handler and the main
program do not both use these registers, this code is unecessary.

movwf W

movf STATUS, w
bcf STATUS, RPO
movwf _status

movf PCLATH, w
movwf _pclath

clrf PCLATH

If more than one interrupt event is enabled, the programmer will then poll the
enabled interrupt flags to see which one took place, and then direct the program to
the desired handler code. When the interrupt handler code is finished, the
programmer must then return any register values saved at the start of the handler.
The action of the code shown above is reversed with the following code.

movf _pclath, w
movwf PCLATH
movf _status, w
movwf STATUS
swapf w, f

swapf _W,W

Finally, the interrupt routine is ended with the “return from interrupt” command -
retfie. With this command the processor automatically re-enables the GIE bit,
reloads the saved Program Counter value and returns control to the interrupted
main program from where it left off.

Interrupt Event

Enable Bit

Flag Bit

Other Settings

RB Port Change
On any change RB inputs 4 thru 7

RBIE
INTCON (bit 3)

RBIF

INTCON (bit 0)

Can awaken from
sleep.

RBO External
On rising or falling edge of input
RBO.

INTOIE
INTCON (bit 4)

INTOIF

INTCON (bit 1)

INTEDG
OPTION_REG (bit 6)
Rising edge (1) or

falling edge (0)
Timer 0 Overflow TMROIE TMROIF Cannot awaked from
Timer overflow from FFh to 00h | [INTCON (bit 5) | INTCON (bit 2) sleep.

OPTION_REG
A/D Converter ADIE ADIF ANSEL, ADCONO,
On Conversion Completed PIE1 (bit 6) PIR1 (bit 6) ADCONT reg.

Can awaken from

sleep.
AUSART Receive RCIE RCIF RCSTA, TCREG,
On receive buffer full. PIE1 (bit 5) PIR1 (bit 5) SPBRG
AUSART Transmit TXIE TXIF TXSTA, TXREG,

SPBRG,

On transmit buffer empty.

PIE1 (bit 4)

PIR1 (bit 4)

Synchronous Serial Port
On transmission/ reception
complete.

SSPIE
PIE1 (bit 3)

SSPIF
PIR1 (bit 3)

SSPSTAT, SSPCON,
SSPBUF

CCP1

On Timer 1 register capture in
capture mode or on Timer 1
register comparison match in
compare mode.

CCP1IE
PIE1 (bit 2)

CCP1IF
PIR1 (bit 2)

CCO1MO thru 3
CCP1CON (bits3-0)

CCPR1H:CCPR1L
Register pair

Timer 2 to PR2 Match
On a timer 2 to PR2 match
occurring.

TMR2IE
PIE1 (bit 1)

TMR2IF
PIR1 (bit 1)

TMRZ2, T2CON, PR2

Timer 1 Overflow TMR1IE TMR1IF T1CON reg.
Timer overflow from FFh to 00h | PIE1 (bit 0) PIR1 (bit 0) Clan awaken from

sleep.
Oscillator Fail OSFIE OSFIF

On system oscillator failed; clock
input changed to INTRC.

PIE2 (bit 7)

PIR2 (bit 7)

Comparator Interrupt CMIE CMIF CMCON register

On change of comparator input. | PIE2 (bit 6) PIR2 (bit 6) Clan awaken from
sleep.

EEPROM Write Operation EEIE EEIF

On write operation completed.

PIE2 (bit 4)

PIR2 (bit 4)

