
Building a Pure Data Sound
Synthesizer

John Talbert, May 2021

A Four Stage Filtered Additive Synthesizer

1



Table of Contents

What is Pure Data (PD) 3

Learning PD 4

PD Synthesizer Design 4

The Controller 5

Circuit Playground Express (CPX) 7

Setup 8

Communication 10

Solution 10

Sensor Data Collection 12

CPX Pixels 14

Pixel Operations 15

CPX Sketch 16

PD Sketch 24

Misc 25

2



What is Pure Data

http://write.flossmanuals.net/pure-data/introduction2/

3

Pure Data (or Pd) is a real-time graphical programming 
environment for audio, video, and graphical processing. Pure 
Data is commonly used for live music performance, VeeJaying, 
sound effects, composition, audio analysis, interfacing with sensors,
using cameras, controlling robots or even interacting with websites. 
Because all of these various media are handled as digital data 
within the program, many fascinating opportunities for cross-
synthesis between them exist.

Programming with Pure Data is a unique interaction that is much 
closer to the experience of manipulating things in the physical 
world.  The most basic unit of functionality is a box, and the 
program is formed by connecting these boxes together into 
diagrams that both represent the flow of data while actually 
performing the operations mapped out in the diagram.  The 
program itself is always running, there is no separation between 
writing the program and running the program, and each action 
takes effect the moment it is completed. 

Pure Data is a graphical programming environment. What this 
means is that the lines of code, which describe the functions of a 
program and how they interact, have been replaced with visual 
objects which can be manipulated on-screen. Users of Pure Data 
can create new programs (patches) by placing functions (objects) 
on the screen. They can change the way these objects behave by 
sending them messages and by connecting them together in 
different ways by drawing lines between them.

The real advantage of Pure Data is that it works in "real time". That
means that changes can be made in the program even as it is run-
ning, and the user can see or hear the results immediately. This
makes it a powerful tool for artists who would like to make sound or
video in a live performance situation.



Learning Pure Data

Pure Data is an ideal platform for creating Electronic Music Synthesizers.  The title page
show some Pure Data code taken from the Pure Data Tutorial on the Floss Manuals 
Website.  This four stage filtered additive synthesizer is a good example of what Pure 
Data Code looks like.  

Here is a list of books and tutorials on Pure Data, with an emphasis on Electronic Music 
Generation.

Miller Puckette PD Creator http://msp.ucsd.edu/Pd_documentation/index.htm
PD Website Tutorials https://puredata.info/docs/tutorials
Floss Website Manual http://write.flossmanuals.net/pure-data/
"Loadbang" by Johannes Kreidler http://www.pd-tutorial.com
"Designing Sound" by Andy Farnell http://aspress.co.uk/ds/pdf/pd_intro.pdf

"Pure Data: Electronic Music and Sound Design" by Blanchi, Alessandro, Maurizio

PD Synthesizer Design

It is possible to build an entire Music Synthesizer from just Pure Data, complete with all 
the Slider and Switch objects needed to operate it.  However, the problem with this setup
is that only one controller at a time can be operated from a mouse or trackpad.  What is 
really needed is a bank of actual pots, sliders, and switches and maybe even light 
sensors, motion detectors, accelerometers, foot switches, etc.  This paper will detail a 
way to incorporate as many hardware controllers as you like into your Pure Data 
software sketch.

4

The core of Pure Data is written and maintained by Miller S. Puckette 
(http://crca.ucsd.edu/~msp/) and includes the work of many developers
(http://www.puredata.org/), making the whole package very much an 
open source community effort. Pd runs on GNU/Linux, Windows, and 
Mac OS X, as well as mobile platforms like Maemo, iPhoneOS, and 
Android.



Basically, an Arduino microprocessor will be tasked with the job of collecting data from 
all the controller devices and transmitting it to the Pure Data sketch.  From among the 
many communication protocols designed to send data between an Arduino 
microprocessor and a main computer, USB MIDI was chosen for its simplicity and 
speed.   

All Arduino boards provide multiple ADC pins to connect the pots, sliders, and other 
sensors mounted on your controller box.  They also all have digital pins for connecting 
any switches and other on/off type sensors.  

The Arduino MIDIUSB library used in this project only works on microcontrollers with 
native USB capabilities.  That limits your Arduino board choices to the Leonardo, 
Micro, Due, Nano and MKR boards.  With the MIDIUSB library you can just plug your 
microprocessor into your personal computer with a USB cable, and it will appear to your
Pure Data sketch as a MIDI controller.  However, in this case, the Note-On MIDI 
commands transmitted back and forth over the USB cable will not be carrying the usual 
music keyboard data.  Instead, they will be programmed to carry any changes happening
among the pots, sliders, switches and sensors making up your controller device.

The Controller

By now you probably have your own vision of what a controller device would look like, 
maybe a box with rows and rows of slide pots, joysticks, big fat pushbuttons and the 
like.  The programs outlined here on both the Arduino microprocessor side and the Pure 
Data sketch side can easily accomodate whatever you have in mind.  

However, I'm going to go a little wild and crazy here and build a controller that nobody 
has imagined.  Be assured, though, that program design detailed here can easily be 
adapted to your own ideas.

Meet the French Continental PD Phone Synth !

5



6



Here we have a fancy old style dial phone.  The phone innards was relieved of its 
massive solenoid and bell to provide space for a Raspberry Pi computer board running 
the Pure Data programming app.  The base of the phone was drilled to accomodate 
Audio stereo input and output jacks connected to an audio codec board 
(AudioInjector.net) riding on top the Raspberry Pi.  A rotary pot glued to the Rotary Dial
of the phone and the handset cradle switch were co-opted for future audio schemes.

To top off this brilliant device, Adafruit's Circuit Playground Express was chosen as the 
controller microprocessor.  This micro is encased in a small circular disc that mounts 
perfectly on the handset earpiece. Best of all, the USB cable that connects the Circuit 
Playground Express (CPE) to the Raspberry Pi fits nicely inside the coils of the handset 
cable.

Circuit Playground Express (CPX)
https://learn.adafruit.com/adafruit-circuit-playground-express

The Circuit Playground Express by Adafruit is a miniature microprocessor device 
incorporating a number of sensors and LEDs,  all mounted on a small circular board.  Its 
ARM processor is compatable with the Arduino IDE programming app and with the 
Arduino MIDIUSB library.  The microprocessor includes a light sensor, a three axis 
motion sensor, a microphone sensor, ADC connections, Digital Input connections, 
Capacitive Touch connections, on-board switches, and ten RGB LEDs. 

A USB cable connection is used to program and interact with the CPX from a main 
computer. That main computer can an Apple Mac computer running Arduino's IDE 
programming app or Pure Data.  Alternatively, that USB cable could easily be switched 
over to a Raspberry Pi programming environment at any time.

The programming required is two-fold.  First, the Circuit Playground must be 
programmed to send its changing sensor data to the main computer and, perhaps, also 
receive LED data from the main computer to light the ten RGB lights spaced around the 
Circuit Playground. All data will be sent and received through the serial USB cable 
connecting the Circuit Playground to the Main Computer.  This communication 
program, once written and tested from an Arduino IDE app, can permanently be loaded 
onto the Circuit Playground to service any Pure Data sketch needing a controller device.

Second, the Pure Data sketch, running on either the Raspberry Pi or the Apple Mac, 
must be able to receive this specially formatted sensor data from the Circuit Playground 

7



and do something interesting with it.  The receiving subroutines in Pure Data can be set 
in stone, but the main music synthesizer program can be changed at will.

Setup

The Circuit Playground has a flash drive that should appear as a “CPLAYBOOT” drive 
on your Mac. Unfortunately, MacOS version 10.14.4 and above will prevent the flash 
drive from appearing.  An older MacOS or a Windows or Linux machine (Raspberry 
Pi?) is needed to update the system on the Circuit Playground Express.

https://learn.adafruit.com/adafruit-circuit-playground-express/updating-
the-bootloader

After updating the bootloader, the Arduino IDE programming app should work fine even
if the flash drive does not appear on the desktop.  Double clicking the button at the 
center of the Circuit Playground will reset the processor causing all the NeoPixels to 
turn green.

The next step is to program the Circuit Playground from the Arduino IDE app 
(Integrated Developement Environment). Make sure your Mac is on a WiFi Network.  
Start up the Arduino IDE.  Select the Menu Tools/ManageLibraries.  Do a search for 
“circuit playground”  and install/update this library.  Try out the example programs 
under File/Examples/AdafruitCircuitPlayground.

https://learn.adafruit.com/adafruit-circuit-playground-express/set-up-
arduino-ide

You can also download the complete Library from:  https://github.com/adafruit/
Adafruit_CircuitPlayground

 Your Arduino program should include both the Circuit Playground and MIDIUSB 
libraries:

#include <Adafruit_CircuitPlayground.h>
#include <MIDIUSB.h>

Note that some of example programs in the Playground Library were written for the 
older Classic Playground so the sensor addresses (A1, A2, …)  may need to be changed 
to the newer Playground Express addresses.  

8



https://learn.adafruit.com/adafruit-circuit-playground-express/pinouts

Function Express                  Classic 

Button A D4 D4
Button B D5 D19
Slide Switch D7 D21
Red LED D13 D13
10 NeoPixels D8
Accel Interrupt D27
IR Transmit D25
IR Receive D26

Light Sensor A8 A5
Temp Sensor A9
IR Proximity A10
Microphone Internal A4
Speaker Out A0/D12 A11/D12
Cap Touch A2/D9 A9/D6
Cap Touch A3/D10 A10/D10
Phone Dial A4/D3
Phone Switch A5/D2
Cap Touch A6/D0 A0
Cap Touch A7/D1 A1

Once your Arduino sketch is loaded and running, start up the Pure Data application on 
the main computer. Inside the Pure Data application you must first find the serial port 
number that the Circuit Playground occupies.  Click on the “devices” message box to get
a list of serial ports in the PD Console window.  Choose the one that shows up when you
plug in the Circuit Playground USB and enter that in the green “serial port #” selection 
box.  When the correct port is selected, the running lights on the Playground Express 
will stop, indicating that serial communications has been set up.  Messages in the PD 
Console Window will also confirm this.

Finally,  go to “MIDI Setting…” under the Pure Data “Media” menu and choose “Circuit
Playground Express” for the input and output devices.  

9



Communication

Firmata, a well established communications protocol, is included in the Arduino Library 
for the Circuit Playground.  It uses MIDI protocol, byte-size serial communication 
through USB cables.  The MSB (most significant bit) bit of each byte is used to mark 
each byte as a command or 7-bit data.  A zero in the most significant bit marks the 7 
lower bits as data.  A "1" in the most significant bit marks the lower 7 bits as commands.
Firmata is designed to be all-encompassing and as such can be unwieldy.   

There is a public Firmata written specifically for the Circuit Playground Classic. The 
Firmata code was written for the older Classic Circuit Playground and does not support 
some of the Express devices such as the Accelerometer or the Capacitive Touch sensors. 
On the PD side, Pure-Data has public Firmata scripts for most Arduino Boards but the 
scripts use the PD extended version and, as of now, there is no public PD script coded 
specifically for the Circuit Playground Express.  

Other communication schemes, such as Simple Message System, converts the data to  
ASCII numbers for the data and ASCII letters for the commands, all separated by special
ASCII characters such as Carriage Return or Space.  The ASCII bytes are sent through 
the serial USB lines.  Inside Pure Data, the ASCII then needs to be converted back to 
actual numbers.  This scheme is simple but slow. 

OSC (Open Sound Control) uses Ethernet or WiFi for communications which is super 
fast.  Because of the speed, this data is sent simply as text.  There are standard OSC text 
formats for different types of data; however, in reality, the text data can be loosely 
formatted to anything both sender and receiver can agree upon.  Pure Data has some 
UDP or TCP objects designed to receive and send Ethernet data.

Solution

My final solution involves two components, an Arduino programmed sketch for the 
Circuit Playground Express, and a set of Pure Data objects designed to receive controller
data and send LED Pixel data.  These two sketches will be documented in full at the end 
of the paper.

For this project I have chosen to use MIDI messages, in particular the Note-On 
command, to transfer data between the Circuit Playground Express and Pure-Data on the
Raspberry Pi.  In this case the data transfered through MIDI is not the traditional musical
note information; it is sensor data from the Circuit Playground. 

10



Three bytes are sent in a MIDI Note-On command - the Command/MIDI-Channel byte, 
the Pitch byte, and the Note Velocity byte.   

1. Command Byte. 4 bits of the Command Byte identify the Midi command as Note-
On. They must be set to 1001. The 4-bit MIDI-Channel data in the command byte will
specify which sensor is sending data, for as many as 16 sensors.  

2. Data Bytes. The two Note-On data bytes will be used for the sensor data - 7 bits
from Pitch and 7 bits from Velocity. This allows the data to have any value from 1-bit
switch data to 14-bit sensor data ( a maximum value of 16,383 ).  

For data numbers larger than a 7-bit 127 maximum, set Pitch equal to the value bit-
shifted right by 7, and set Velocity equal to the value ANDed with 127 (Binary 0111
1111).

MIDI over USB is used as it has a much higher speed than regular MIDI over MIDI 
cables.  Since the MIDI communication uses the same USB lines as the Arduino IDE 
program loading, there can be problems interrupting the current MIDIUSB program to 
load a new one from the IDE app.  If your program refuses to load, follow this 
procedure:

The IDE load command starts by “Compiling” the Program and then “Uploading” it.  
Wait for the “Uploading” to start and then double click the center RESET button on the 
Circuit Playground to interrupt the current program and put the CPX into bootload 
mode.  Timing this action can be tricky, but you should be able to eventually get the load
to work after several attempts.  

On the Pure Data side, simply use several MIDI “notein” objects to receive the CPX 
sensor data.  Adding a “MIDI Channel” argument (1 to 16) to notein will cause that 
object to only receive messages from a particular sensor, as set in the Arduino sketch.  If 
both the Pitch and Velocity outlets are combined to receive a sensor value larger than 
127, the left outlet value must be shifted left by seven bits and then added to the right 
outlet.  See the illustrated Pure Data sketch at the end of this paper.
 
Inside the Arduino Circuit Playground sketch each CPX Sensor is abitrarily assigned a 
MIDI Channel (0-15 here, 1-16 in PureData)

    0   A6 Capacitive Touch
    1   A7 Capacitive Touch
    2   A2 Capacitive Touch
    3   A3 Capacitive Touch
    4   Phone Cradle Switch

11



    5   Right Button
    6   Left Button
    7   Slide Switch
    8   Phone Rotary Dial
    9   Light Sensor
    10  Sound Pressure
    11
    12
    13  Accelerometer X
    14  Accelerometer Y
    15  Accelerometer Z

    Received in PureData using "notein x" objects with x = Sensor (MIDI CHNL#)

Sensor Data Collection

The main job of the Circuit Playground sketch is to collect Sensor data.  This commonly 
involves the function analogRead(pin) for the rotary and slide pots, and the function 
digitalRead(pin) for the switches.  In this project, the rotary dial pot and the cradle 
switch use these functions.  For most controller designs with banks of sliders and 
switches, these two functions are all you need.

In this project, specialized functions for the sensors found in the Circuit Playground 
Library are added to the program.

readCap(pin)
rightButton()
leftButton()
slideSwitch()
lightSensor()
soundSensor()

motionX()
motionY()
motionZ()

Each sensor value on your controller is read once each time through the main loop.  Its 
value is then sent to the Pure Data sketch over USB MIDI, but only if there is a change 
in the value.  The entire main loop program is repeated over and over again for as long 
as the Circuit Playground has power.  That means that each sensor's value must be stored
in a variable. Any reading from the current loop is then compared with the value stored 
from the last loop.  If there is a change, the new value is sent out and its variable is 
updated with the new value.  If there is no change, then nothing happens.  This action is 
easily accomodated in code with the common "if-then-else" construct.

12



Sometimes the sensor outputs will naturally fluctuate by small amounts resulting in a 
constant rapid flow of MIDI data for that sensor.  This can be minimized by averaging 
out the fluctuations.  To do this in the code, several past readings are saved, summed 
together with the current reading, and then divided by the number of readings summed.  
This average value is then saved and used as the sensor value for the if-then-else 
decisions described above.  

In code, the averaging is accomplished by saving a set number of past readings in a 
circular array.  A circular array has a pointer to the positions of the stored array readings.
The pointer always points to the oldest sensor reading.  Each time through the loop the 
following steps are taken:

1. Use the loop pointer to get the oldest reading in the array.
2. Subtract that reading from a stored sum of all the array readings.
3. Add the new reading to the stored sum.
4. Enter the new reading into the array at the pointer's location, replacing the oldest reading.
5. The pointer is now at the newest reading. Increment it so it again points to the oldest reading.
6. Make the array circular - if the incremented pointer goes past the end of the array, reset it to the
zero element.

This averaging calculation is employed for many of the analog sensors.  The size of the 
arrays, or number of past reading saved, can easily be changed in the code.  The larger 
the array the less flucuations in the sensor.  Greater smoothing out of the sensor readings
also slows down the sensor changes; so there is a compromise involved in setting the 
size of the averaging arrays too large.  It is also interesting to note that, due to the design
of our coding here, increasing the size of the array does not increase the time needed to 
do the averaging calculation.

The touch sensors proved to be a special problem.  The touch sensors were implemented 
by simply hanging a bare wire from the Circuit Playground solder pads.  They were to 
act as simple digital switches - high value when touched and low value otherwise.  
However, the "readCap()" function does not put out a digital value, it actually puts out 
an analog value.  It was found that the readings are fairly constant when the wire is not 
being touched, but fluctuate wildly when touched -- nothing at all like a proper switch.  

To solve this problem, I decided to use the same averaging scheme described above but 
averaging not the actual sensor values but the absolute value of the differences between 
the readings.  When touched, the average difference is large, while the untouched 
average difference is close to zero.  You then compare the difference average with some 
chosen threshold value to decide on a final switch value of 1 or zero.  Problem solved 
but with a lot of calculation. 

I suspect that the touch sensor pads need to be mounted close to but insolated from a 
ground plane to tame them.

13



CPX Pixels

The Circuit Playground Express has 10 multi-colored RGB Pixel Lights.  The CPX 
library has a function designed to light up just one Pixel at a time by sending it three 8-
bit color values - CircuitPlayground.setPixelColor(pixel#, red, green, blue).  

The MIDI “noteout” object is used from Pure Data to manipulate the Pixels.  This object
sends 3 bytes to the Circuit Playground Express - rx.byte1 with a 4-bit MIDI Channel 
number, rx.byte2 with 7-bits of data, and rx.byte3 with 7-bits of data.  With this limited 
data space in a MIDI NoteOut command, we can't use it to fully load an RGB pixel's 
three full bytes of  red, green, and blue data. Instead, the NoteOut command will be used
to choose from several Pixal operations defined in the Arduino sketch. 

The 4-bit MIDI Channel number in rx.byte1 is used in a “switch/case” function to define
16 different Pixel operations. In general, the first 8 operations play with three program 
variables labeled red, green, and blue.   Each is an 8-bit number, variable between 0 and 
255.  The remaining 8 operations load the color variables onto one or more of the 10 
Pixels.  The chart below details the 16 operations created for this Circuit Playground 
sketch.

14



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Pure Data Operation              rx.byte2                 rx.byte3        
-----------------------------------------------------------------------------------------------------------------------------------

 1     0a00 000c      0ddd dddd

Set red:  If a=1, then red = a random value, else red = cddd dddd
-----------------------------------------------------------------------------------------------------------------------------------

2     0a00 000c      0ddd dddd

Set green:   If a=1, then green = a random value, else green = cddd dddd.
-----------------------------------------------------------------------------------------------------------------------------------

3     0a00 000c      0ddd dddd

Set blue:  If a=1, then blue = a random value, else blue = cddd dddd.
-----------------------------------------------------------------------------------------------------------------------------------

4     0a00 0000      0000 0000

Red Pixel:   If a=1, then red = a random value, else red = 255, green = 0, blue = 0.
-----------------------------------------------------------------------------------------------------------------------------------

5     0a00 0000      0000 0000

Green Pixel:  If a=1, then green = a random value, else green = 255, red = 0, blue = 0.
-----------------------------------------------------------------------------------------------------------------------------------

6     0a00 0000      0000 0000

Blue Pixel:   If a=1, then blue = a random value, else blue = 255, red = 0, green = 0.
-----------------------------------------------------------------------------------------------------------------------------------

7     0a0b bbbg      0ggg rrrr

Set All:   If a=1, then red, green, blue = random xxxx xxxx values, 
       else red = rrrr 0000, green = gggg 0000, and blue = bbbb 0000.

-----------------------------------------------------------------------------------------------------------------------------------
8     0mpp ppcc      0xxx xxxx

Fill Matrices:   Two redx, greenx, and bluex arrays were created to hold RGB values for all 10
  pixels.  One RGB Pixel color is loaded in this operation (one of 30 per matrix).
  pixel color = xxxx xxx0, RGB select = cc (red=0, green=1, blue=2), 
  pixel number = pppp (0 to 10), matrix = m (one of two). 

-----------------------------------------------------------------------------------------------------------------------------------
9     0m00 0000      0000 0000

Load Matrix:    matrix select = m (one of two).  Load 30 RGB values for all 10 Pixels from matrix.
-----------------------------------------------------------------------------------------------------------------------------------

10     0000 0000      0000 0000

Load Random:    Load all 10 Pixels with random color
-----------------------------------------------------------------------------------------------------------------------------------

11     0000 0000      0000 0000

Load Random Variation:    Keep higher 4 bits of red, green, and blue, and load a random value for 
          their lower 4 bits.  ( cccc rrrr )

-----------------------------------------------------------------------------------------------------------------------------------

15



12     0000 0000      0000 0000

None:  
-----------------------------------------------------------------------------------------------------------------------------------

13     0000 0000      0000 pppp

Load One Pixel:    Load one Pixel ( equal pppp) with values in the variables red, green, blue
-----------------------------------------------------------------------------------------------------------------------------------

14     0000 0ppp      0ppp pppp

Load Any Pixels:    Each “p” represents one of 10 pixels.  Load all those where p=1 with the
    values in the variables red, green, blue.

-----------------------------------------------------------------------------------------------------------------------------------
15     0000 0000      0000 0000

Load All:        Load all 10 Pixels with same color from red, green, blue.
-----------------------------------------------------------------------------------------------------------------------------------

16     0000 0000      0000 0000

Clear All:         Turn off all Pixels.  CircuitPlayground.clearPixels( )  
-----------------------------------------------------------------------------------------------------------------------------------

The simplest way to use “noteout” in Pure-Data for these LED operations is to create 
several messages populated with three rx.byte LED operation values and connect them 
to the left input of the “noteout” object.  Click on the messages you want sent to the 
Circuit Playground.

__________________________
| rx.byte2   rx.byte3  operation# (

CPX Sketch 

/*
    Many thanks to George Mandis for his circuit-playground-midi-multi-tool

    Circuit Playground Express Sensors are sent as MIDI Note-On data
    LED Pixels can be set with Received MIDI Note-On data

    Serial.print statements can be commented out except when debugging.

    Each Sensor is assiged a MIDI Channel (0-15 here, 1-16 in PureData)

    0   A6 Capacitive Touch
    1   A7 Capacitive Touch
    2   A2 Capacitive Touch
    3   A3 Capacitive Touch
    4   Phone Cradle Switch
    5   Right Button
    6   Left Button

16



    7   Slide Switch
    
    8   Phone Rotary Dial
    9   Light Sensor
    10  Sound Pressure
    11
    12
    13  Accelerometer X
    14  Accelerometer Y
    15  Accelerometer Z

    Receive in PureData using "notein x" objects with x = Sensor (MIDI CHNL#)
    
*/

#include <MIDIUSB.h>
#include <Adafruit_CircuitPlayground.h>

uint8_t pads[] = {0, 1, 9, 10};  // "A" pin numbers used for Capacitive Touch
//These are Circuit Playground Classic pins (Actual Express pins are A6, A7, A2, A3)

uint8_t padValues[] = {0, 0, 0, 0}; // Capacitive Touch On/Off states

const int numChannels = sizeof(pads); // number of pins set up for Capacitive Touch
const int numReadings = 3;  // number of diffs used to calculate average

int readingDiffs[numChannels][numReadings];   // the difference readings from caps
int total[numChannels];  // added total of diffs
int lastReading[numChannels];  // last actual Cap reading for calculating diff

int diffSensitivity = 100;
int capacitiveRead;
int readIndex;
int average = 200;

bool rightButtonPressed = 0;
bool leftButtonPressed = 0;
bool slideSwitchPressed = 0;
bool phoneButtonPressed = 0;

const int rotaryNumReadings = 3;
int rotaryReadings[rotaryNumReadings];
int rotaryTotal = 0;
int rotaryIndex = 0;
int rotaryRead = 0;
int rotaryAverage = 0;

const int lightNumReadings = 5;
int lightReadings[lightNumReadings];
int lightTotal = 0;
int lightIndex = 0;
int lightRead = 0;
int lightAverage = 0;

const int soundNumReadings = 10;
int soundReadings[lightNumReadings];
int soundTotal = 0;
int soundIndex = 0;
int soundRead = 0;
int soundAverage = 0;

int X;
int Y;
int Z;

17



int color;
int red = 0;
int green = 0;
int blue = 0;
byte redx[2][16]; 
byte greenx[2][16];
byte bluex[2][16];
byte matrix;

int xxx;

midiEventPacket_t rx;

/*
 * **********************SETUP***********************
 */
 
void setup() {
 CircuitPlayground.begin();
 CircuitPlayground.setAccelRange(LIS3DH_RANGE_8_G);
 Serial.begin(9600);

 pinMode(2, INPUT_PULLUP);   //Phone Cradle Switch
 randomSeed(analogRead(A4));
 
}

/*
 * ********************FUNCTIONS*******************
 */

void noteOn(byte channel, byte pitch, byte velocity) {
  midiEventPacket_t noteOn = {0x09, 0x90 | channel, pitch, velocity};
  MidiUSB.sendMIDI(noteOn);
}

/*
 * *******************MAIN LOOP********************
 */

void loop() {

 /* **************Capactive touch to MIDI**************
  *  
  *  When touched the capacitive readings display wide erratic values.
  *  While untouched, the readings are fairly constant.
  *  To get simple On/Off switch type results, The reading differences are averaged.
  */

 for (int chan = 0; chan < numChannels; ++chan ) {  // number of Touch controls
  
    capacitiveRead = CircuitPlayground.readCap(pads[chan]);
    
    total[chan]= total[chan] - readingDiffs[chan][readIndex]; //subtract oldest diff
    readingDiffs[chan][readIndex] = abs(capacitiveRead - lastReading[chan]); //calculate diff
    total[chan] +=readingDiffs[chan][readIndex];  //add latest diff to running total

    lastReading[chan] = capacitiveRead; //save reading for next diff calculation   
    average = total[chan]/numReadings;  //calculate average value of Cap reading differences

        if (average > diffSensitivity)  {  //readings all over the place = touched
         

18



          if (padValues[chan] != 1) {
  //          Serial.print(pads[chan]);
  //          Serial.print(" - ");
  //          Serial.print(average);

            noteOn(chan, 1 + pads[chan], 1 );
            MidiUSB.flush();
            padValues[chan] = 1;
  //          Serial.println(" - Note on");
            delay(10);
          } // end of if padValues
        }   // end of if average
        
                
        else {                          // fairly constant Cap readings = not touched
          if (padValues[chan] == 1) {
   //         Serial.print(pads[chan]);
   //         Serial.print(" - ");
  //          Serial.print(average);

            noteOn(chan, 1 + pads[chan], 0);
            MidiUSB.flush();
            padValues[chan] = 0;
    //        Serial.println(" - Note off");
            delay(10);
          } //end of if padValues
  

  } // end of else 
  } // end of for

    ++readIndex;
    if (readIndex >= numReadings){ readIndex = 0; }

/*
 * ******************Switches to MIDI*******************
 */
    if (CircuitPlayground.rightButton() && !rightButtonPressed) {
        rightButtonPressed = true;
        noteOn(5, 0, 1 );
        MidiUSB.flush();
    //    Serial.println("Right Button On");
    } else if (!CircuitPlayground.rightButton() && rightButtonPressed){
        rightButtonPressed = false;
        noteOn(5, 0, 0);
        MidiUSB.flush();
    //    Serial.println("Right Button Off");
    }

   if (CircuitPlayground.leftButton() && !leftButtonPressed) {
        leftButtonPressed = true;
        noteOn(6, 0, 1 );
        MidiUSB.flush();
    //    Serial.println("Left Button On");
   } else if (!CircuitPlayground.leftButton() && leftButtonPressed){
        leftButtonPressed = false;
        noteOn(6, 0, 0);
        MidiUSB.flush();
   //     Serial.println("Left Button Off");
    }

   if (CircuitPlayground.slideSwitch() && !slideSwitchPressed) {
        slideSwitchPressed = true;
        noteOn(7, 0, 1 );

19



        MidiUSB.flush();
   //     Serial.println("Slide Switch to Right");
   } else if (!CircuitPlayground.slideSwitch() && slideSwitchPressed){
        slideSwitchPressed = false;
        noteOn(7, 0, 0);
        MidiUSB.flush();
    //    Serial.println("Slide Switch to Left");
    }

   if (digitalRead(2) && !phoneButtonPressed) {
        phoneButtonPressed = true;
        noteOn(4, 0, 1 );
        MidiUSB.flush();
   //     Serial.println("Phone Button Off");
   } else if (!digitalRead(2) && phoneButtonPressed){
        phoneButtonPressed = false;
        noteOn(4, 0, 0);
        MidiUSB.flush();
    //    Serial.println("Phone Button On");
    }

/*
 * ********************Analog to MIDI*************
  rotaryRead = analogRead(A4);
  rotaryTotal = rotaryTotal - rotaryReadings[rotaryIndex];
  rotaryReadings[rotaryIndex] = rotaryRead;
  rotaryTotal += rotaryRead;

  ++rotaryIndex;
  if (rotaryIndex >= rotaryNumReadings){ rotaryIndex = 0; }

  if (int(rotaryTotal/rotaryNumReadings) != rotaryAverage){
    rotaryAverage = int(rotaryTotal/rotaryNumReadings);
    noteOn(8, rotaryAverage >> 7, rotaryAverage & 127);
    MidiUSB.flush();
 //   Serial.print("Rotary Dial  ");
 //   Serial.println(rotaryAverage, DEC);
  }
  
 //************************************************
  
  lightRead = CircuitPlayground.lightSensor();
  lightTotal = lightTotal - lightReadings[lightIndex];
  lightReadings[lightIndex] = lightRead;
  lightTotal += lightRead;

  ++lightIndex;
  if (lightIndex >= lightNumReadings){ lightIndex = 0; }

  if (int(lightTotal/lightNumReadings) != lightAverage){
    lightAverage = int(lightTotal/lightNumReadings);
    noteOn(9, lightAverage >> 7, lightAverage & 127);
    MidiUSB.flush();
 //   Serial.print("Light Sensor  ");
 //   Serial.println(lightAverage, DEC);
  }

 //************************************************
/*
   // Take 10 milliseconds of sound data to calculate
  soundRead = CircuitPlayground.mic.soundPressureLevel(10);
  //soundRead = CircuitPlayground.soundSensor();
  soundTotal = soundTotal - soundReadings[soundIndex];

20



  soundReadings[soundIndex] = soundRead;
  soundTotal += soundRead;

  ++soundIndex;
  if (soundIndex >= soundNumReadings){ soundIndex = 0; }

  if (int(soundTotal/soundNumReadings) != soundAverage){
    soundAverage = int(soundTotal/soundNumReadings);
    noteOn(10, soundAverage >> 7, soundAverage & 127);
    MidiUSB.flush();
    Serial.print("sound Sensor  ");
    Serial.println(soundAverage, DEC);
  }
*/
//****************Accelerometer: TBD***************** 

 // Accelerometer: TBD
  X = CircuitPlayground.motionX() + 20;
  Y = CircuitPlayground.motionY() + 20;
  Z = CircuitPlayground.motionZ() + 20;

  noteOn(13, 0, X);
  noteOn(14, 0, Y);
  noteOn(15, 0, Z);
/*
  Serial.print("X: ");
  Serial.print(X);
  Serial.print("  Y: ");
  Serial.print(Y);
  Serial.print("  Z: ");
  Serial.println(Z);
*/

//*********Receive MIDI to Play With LED PIXELS**************  

// Pixel control from MIDI Note-On commands (rx.header == 9)
// Pixel 8-bit data (0 to 255) -- 7 bits in byte3, 1 bit in byte2 (LSB)
// Pixel operations set by MIDI Channel value in byte1
// Warning!! PureData MIDI Channel values are 1+ (1-16) the case values here (0-15)

 rx = MidiUSB.read();

      if (rx.header == 9) {               //if Note-On received
/*        
        Serial.print("Received: ");
        Serial.print(rx.header, DEC);
        Serial.print("-");
        Serial.print(rx.byte1, DEC);
        Serial.print("-");
        Serial.print(rx.byte2, DEC);
        Serial.print("-");
        Serial.println(rx.byte3, DEC);        
*/        
        switch (rx.byte1 & 15){  //the MIDI Channel bits control what happens
                   
          
          case 0:     //set red
            if (rx.byte2 >= 64) { red = random(255); }
            else {
            red = ((rx.byte2 & 1) * 128) + rx.byte3; }
            break;
            

21



          case 1:     //set green
            if (rx.byte2 >= 64) { green = random(255); }
            else {
            green = ((rx.byte2 & 1) * 128) + rx.byte3; }
            break;
          case 2:     //set blue
            if (rx.byte2 >= 64) { blue = random(255); }
            else {
            blue = ((rx.byte2 & 1) * 128) + rx.byte3; }
            break;
            
          case 3:     // set color = red
            if (rx.byte2 >>7) { red = random(255); }
            else { red = 255; }
            blue = 0;
            green = 0;
            break;           
          case 4:    // set color = blue
            if (rx.byte2 >= 64) { blue = random(255); }
            else { green = 255; }
            red = 0;
            blue = 0;
            break;
          case 5:     // set color = green
            if (rx.byte2 >= 64 { green = random(255); }
            else { blue = 255; }
            green = 0;
            red = 0;
            break;         
              
          case 6:    // set all 3 colors from 4 bit values
            if (rx.byte2 >= 64) { 
              green = random(255); 
              red = random(255);
              blue = random(255);
              }
              else {
                red = rx.byte3 << 4;
                green = rx.byte3 + ((rx.byte2 & 1) * 128);
                blue = (rx.byte3 & 30) << 3;
              }
              break;

          case 7:   // load RGB element of color matrixes. 
                    // 7 bit RGB values for each of 10 pixels
              if ((rx.byte2 & 3) == 0) {     //redx matrix
                redx[rx.byte2 >> 6][(rx.byte2 >> 2) & 15] = rx.byte3 < 1;
              }
              if ((rx.byte2 & 3) == 1) {      //greenx matrix
                greenx[rx.byte2 >> 6][(rx.byte2 >> 2) & 15] = rx.byte3 < 1;
              }
              if ((rx.byte2 & 3) == 2) {      //bluex matrix
                bluex[rx.byte2 >> 6][(rx.byte2 >> 2) & 15] = rx.byte3 < 1;
              }
              break;

          case 8:  //load all 10 Pixels from one of 2 color matrixes
              matrix = rx.byte2 >> 6;
              for (int x = 0; x < 10; x++) {
              CircuitPlayground.setPixelColor(x, redx[matrix][x], 
              greenx[matrix][x], bluex[matrix][x]); }
              break; 
                 
          case 9:   // load Random colors 

22



               for (int x = 0; x < 10; x++) {
               CircuitPlayground.setPixelColor(x, random(255), 
               random(255), random(255)); }
               break;

          case 10:  //load Random variations of colors
               for (int x = 0; x < 10; x++) {
               CircuitPlayground.setPixelColor(x, (red & 0xF0) + random(0xF), 
               (green & 0xF0) + random(0xF), (blue & 0xF0) + random(0xF)); }
               break; 
               
          case 11:
               break;
                       
          case 12:     //load one Pixel           
              CircuitPlayground.setPixelColor((rx.byte3 & 15), red, green, blue);
              break;

          case 13:    //load any number of Pixels with red, green, blue values
              xxx = rx.byte3 + (rx.byte2 << 7);
              for (int x = 0; x < 10; x++) {
              if (bitRead(xxx, x)) {
              CircuitPlayground.setPixelColor(x, red, green, blue);
              }
              }
             break;
             
          case 14:    //load all 10 Pixels with same color
              for (int x = 0; x < 10; x++) {
             CircuitPlayground.setPixelColor(x, red, green, blue); }
             break;
             
          case 15:    //clear all 10 Pixels
             CircuitPlayground.clearPixels();
             break;
            
        }  //end of switch

      } //end of if rx.header
        
             
  }   // end of loop 

23



Pure Data Sketch

24



Raspberry Pi Loads

Sending files like the above PureData Sketch from the Mac VNC Viewer app to the 
Raspberry Pi:  

■ Set up your VNC session with the Raspberry Pi.  

■ Find the dropdown menu at the top center of the VNC Viewer window.  

■ Select the “two arrow” (—>) file transfer indicator.  

■ In the box that comes up click on the “Send Files” button.  

■ A File Selection Dialog box will show up where you can choose the file to send to the 

Raspberry Pi.  

Installing Arduino for the Raspberry Pi:

■ On the Raspberry Pi Web Browser, go to the Arduino site.  

■ Download the “Linux ARM 32 bits” file.  

■ Open the Archiver app.  

■ Select the Menu Archiver/Open, 

■ Find the downloaded Linux ARM file (in the Downloads folder) and open it.  

■ Select the Menu Action/Extract with “All Files” and “With Paths” selected (default). 

■ Go to the Terminal app and run the following to install GUI Menu paths and such.

cd Downloads
ls
cd arduino-1.8.9    ( or whatever version you have )
sudo ./install.sh

■ The Arduino app should then appear under the Programming Menu.  

25



■ From the Arduino Library Manager, install Arduino IDE libraries for both the Circuit 

Playground Express and MIDIUSB.

https://learn.adafruit.com/adafruit-circuit-playground-express/set-up-
arduino-ide

26


