

MIDI Trumpet
John Talbert 3/1992

The MIDI Trumpet was built in response to a composer asking to retrofit his old
trumpet with MIDI capabilities. The design was based on the already developed MIDI
Horn which is a microcomputer based wind controller. In this case, however, we wanted
to use the actual sound of the trumpet to generate the Note Velocity data instead of using
a pressure sensor.

This was accomplished by picking up the trumpet sound with a Barcus Barry
contact mic whose output was fed to a Solid State Music 2011 preamp chip. The preamp
output was rectified by a voltage follower circuit which provided a control voltage that
follows the amplitude of the trumpet sound. The straight preamp output was also made
available for amplification or other processing.

MIDI Key data from the trumpet signal might have been obtained by pitch
detection circuitry; however, circuitry for pitch detection is quite involved and often
slow. Instead, I opted for switches mounted at the bottom of the 3 trumpet fingering
valves, and 5 more pushbuttons mounted within easy reach of the player's fingers. For
continuous controllers, two slide pots were mounted on the side of the trumpet plus a
jack for a foot pedal .

Like the MIDI Horn, the heart of the instrument is a single-board microcomputer -
the SBC88 from Vesta Technology. This is a Forth Language based microcomputer.
Unlike the MIDI Horn, it is readily programmable by the user. It includes a serial
interface for connecting to a PC. User programs can be typed in from any terminal
emulation program and loaded into EEPROM memory using some simple Forth Editor
programs. Only a few subroutines need to be entered to produce MIDI signals from the
controller voltages. These Forth routines are described in detail later. These simple
subroutines are readily expandable by the user/programmer in any number of ways.

1 2 4 1 2 4

10
8

c0
c1
c2

c3

1, 2, 4, 8, and 10 are read from10 PC@.

1, 2, and 4 are read from 20 PC@.

#0 #1 #2 #3 #4 #5

#6
#7

MIDI Trumpet
2

1

Trumpet Software Description

Forth

The Midi Trumpet was designed to be easily programmable. It uses the programming
language Forth, contained on an 8K ROM chip within the computer. The SBC-Forth
Programming Manual will tell you what exactly is included in your Forth system.

Basically, Forth is a collection of functions called a dictionary. Use the command VLIST
to list out all the "words" in your system's dictionary. Your job as a programmer is to add your
own "words" to this dictionary by combining previously created words. The "HORN" program
was done completely in Forth.

Program Storage

The micro has a special kind of memory chip called an EEPROM (Electrically Erasable
Rom Memory). When you write into this chip, the data stored there will remain even when the
computer is powered down. The Load/Hold switch is connected directly to this EEPROM. In
order to load data or programs onto the chip, the switch must be up in the LOAD position.
Normally, however, you will want to safeguard your stored programs by keeping the switch in
its down or HOLD position, especially when powering up.

This EEPROM chip is located at addresses A000 to BFFF (hexidecimal). To the Forth
System, this is the location of eight Editor screens - specifically screens numbered 3 through 10.
(Screens 1 and 2 are in Ram memory.) I have loaded 7 of these screens with words for the
HORN program. You can read them using the command EDITOR 3 LIST, 4 LIST, etc. A word
of WARNING -- the HOLD switch must be down when the power is turned on or the RESET
button pushed; otherwise, Screens 3 through 10 will be erased when the system starts up.

You can also use the EEPROM space to store data - just make sure the Forth Editor
commands stay away from it (for example, don't do a 10 CLEAR command if you know that
you have data previously stored at that screen location). See the Memory Map for the exact
locations of screen memory, dictionary, etc.

Autostart

The computer has an autostart feature. On startup, the system looks at the very first
character of Screen 3. If that character is a colon (i.e. the start of a word definition) then the
startup program will begin loading Screens. All colon definitions of new words on the Screen will
be compiled and added to the dictionary, and any word commands will be executed. The HORN
program is loaded in this way on startup.

MIDI Trumpet
3

2

The word " -->" is used to tell the system to continue loading the next screen. The word
".S" tells it to stop loading.

Be patient on startup. It takes about 12 seconds to load all 9 Horn screens. When the
Horn program is finally executed you will see the words " Midi Trumpet " on the screen if you
are hooked up to a terminal. Press any key to exit the program and get back into the Forth
system. Of course, with the autostart feature, the terminal is not needed to start the HORN
program.

Talking to the Computer

The computer has a serial port labeled "Macintosh" plus a cable for connecting it to one
of the two serial ports on your Macintosh. To talk to the Micro through the serial port you will
need some kind of terminal emulation program - the programs used when communicating with
modems. I am using White Knight 11.12, an updated version of the shareware program Red
Ryder.

Set up your terminal program for a baud rate of 4800, no parity, 8 databits, 1 stopbit, full
duplex, and VT100 terminal emulation. (For resetting the baud rate hit the space bar on reset.)

The computer is set up to autostart the Horn Program. After the horn program has
begun, hit any terminal key to exit the Horn program and get into the Forth system. The Forth
system will announce itself. Hit return a couple times until you get an "OK". You are then
ready to explore in Forth. If at anytime the cursor freezes up you will have to push the Reset
button and start the whole process over again, losing any words you have loaded.

Loading from the Macintosh

You may find it useful to store your programs on the Mac, loading them into the micro
only when you need them. This involves two requirements. First, your terminal emulation
program must be able to send text files with a delay after each character of about 1 second. The
White Knight does it like so: use the SEND TEXT FILE entry under the FILE menu and set the
Delay setting under the Customize/Options/Text Transfer menu. Second, you need a way to
make simple text files stripped of all the formatting data most word processors stick onto a file.
Microsoft Word does this by allowing you to choose a Text Only File Format when saving a file.

The easiest way to load Forth definitions from the Mac is in the form of an Editor Screen.
First set your Forth system to the Editor vocabulary:

EDITOR DECIMAL 1 CLEAR

This sets up the Editor set of words, specifies decimal numbers for the screen line numbers, and
directs the Editor's attention to screen #1 by clearing it (you may use any of the ten screen
numbers here). At this point, when typing by hand, you would normally use the Editor "P"
command which uses the format: line# P stuff you want on this line# Return
get an OK. You would do this 15 times to completely fill up a screen. The Macintosh can
automatically type these commands for you as long as they are in the same "P" command format
and don't come at the micro too fast. Just choose the SEND TEXT FILE from your Mac's

MIDI Trumpet
4

3

terminal emulation program, choose your previously stored TEXT ONLY file when the Find File
dialog box comes up, sit back and watch. When it is finished type 1 LIST to make sure it is all
there. If you are loading EEPROM screens (3 thru 10) you will need to flip the Load/Hold
switch to Load and then execute the word FLUSH. It will take a few seconds. Be sure and
switch back to HOLD after the micro returns an OK. (The reason for FLUSH is that the Editor
works on screens in a buffer area first, not the final location of the screen. The word Flush will
transfer the data in the working buffer to the actual screen memory location.) Once your screens
are filled, use the LOAD command to compile and/or execute the screens.

The HORN Program

The 8-screen listing of this program is my attempt at a workable program for the Midi
Trumpet. Please feel free to modify or cannibalize this program for your own purposes. When
looking through this program keep in mind that the hardware is basically two simple devices: a
MIDI command generator (the micro) and a director (the trumpet, using 8 switches and 4
continuous controllers). What I wrote was a general performance program. More specific
performance piece programs also might be interesting.

Revising stored EEPROM screens is an easy matter. First, type - EDITOR screen#
LIST. Thenb revise the screen using the Editor vocabulary (I only bothered learning the P
command of the Editor). Use the LIST command to check on your revisions. When ready,
throw the Load switch and execute the FLUSH command. Be sure to set the switch back to
HOLD.

What follows is a short description of the Horn program as stored on Screens 3 through 9.
Refer to the program listing when reading this description.

MIDI Trumpet
5

4

Screen 3

0 P : TABLE <BUILDS 0 DO C, LOOP DOES> + ; DECIMAL
1 P 0 0 0 0 4 TABLE CV (newly read controller values)
2 P 0 0 0 0 4 TABLE MCV (midi'd controller values)
3 P 4 7 1 2 4 TABLE CTL (midi controller #'s used)
4 P (breath, modulation, volume, foot controller)
5 P 78 81 79 77 80 83 82 84 73 76 74 74 72 75 72 72
6 P 66 69 71 70 68 71 67 67 61 64 62 65 63 59 60 60
7 P 32 TABLE NOTE (see Trumpet Fingering Charts)
8 P 0 VARIABLE PRG (current midi prog number)
9 P 0 VARIABLE KEYS (newly read pushbuttons)
10 P 0 VARIABLE MKEYS (midi'd pushbuttons)
11 P 0 VARIABLE PITCH (calculated midi key value)
12 P 0 VARIABLE CHNL (midi channel)
13 P 0 VARIABLE ?ON (note on = 1, note off = 0)
14 P 0 VARIABLE ?CTL (true if midi control was sent last)
15 P -->

TABLE is a construct which sets aside locations in RAM memory for storing variables.
For example, the CTL table is created for storing the midi controller numbers to be associated
with the Midi Trumpet's 4 continuous controllers.

4 7 1 2 4 TABLE CTL

To create the table you first specify the values you want to initially store in the table (4, 7, 1, 2),
then you tell it how big the table is (4), then the word TABLE , and finally a name to call the
table (CTL). After creating the table you can use it in the following way:

2 CTL C@ Reads the second slot of table CTL, its value (1) is placed on the stack.
12 2 CTL C! Loads the value 12 into the second slot of table CTL.

According to this table, the Trumpet breath will control midi breath (midi controller #2), slider 1
will control modulation (#1), slider 2 will control volume (#7), and the foot pedal will control the
midi foot controller (#4). As you can see, these values are easily changed. Look up midi
controller numbers in the midi specifications.

 The 32 NOTE table values set up what midi pitch will be played using info from the 3
valve switches and the 2 side switches. There was no easy way to detect harmonics from the
trumpet pickup, so we need an extra couple switches to let the computer know what harmonic to
play. This table of values is a wild guess on my part. Take a look at the sheet explaining how
these values are derived and change them as you like.

The remaining words give names and storage locations for several variables used later.

MIDI Trumpet
6

5

Screen 4

0 P DECIMAL
1 P 0 VARIABLE VEL (midi key velocity)
2 P 0 VARIABLE CSUS (current sustain value)
3 P 0 VARIABLE COCT (current octave offset)
4 P : SETOCT CASE (set oct with side-mount key value)
5 P 24 OF 0 COCT C! ENDOF
6 P 16 OF 24 MINUS COCT C! ENDOF
7 P 8 OF 12 MINUS COCT C! ENDOF
8 P 0 OF 12 COCT C! ENDOF ENDCASE ;
9 P HEX
10 P 10 CONSTANT OFF_TH 12 CONSTANT ON_TH
11 P -->
12 P
13 P
14 P
15 P

More variables and a word for changing pitch ranges. Five bits (3 valves and 2 side
switches) can only give 31 different pitches. The SETOCT word and the COCT variable are
used to change the register of these 31 pitches.

The constants ON_TH and OFF_TH are threshold values. When the breath controller
value goes above ON_TH (12) I turn on a note and when it goes below OFF_TH (10) I turn off
the note.

MIDI Trumpet
7

6

Screen 5

0 P : MLD (x---| send midi value x)
1 P 10 PC! 0 0 PC! 1 0 PC! ;
2 P : ON (velocity, key# ---| send midi key-on)
3 P 90 CHNL C@ OR MLD MLD MLD ; (status, key#, vel)
4 P : OFF (key#---| send midi key-off)
5 P 80 CHNL C@ OR MLD MLD 0 MLD ;
6 P : PROG (p---| send midi program change)
7 P C0 CHNL C@ OR MLD MLD ; (status, program #)
8 P : CONT (val,ctl---| send midi control change)
9 P ?CTL C@ IF (if cont was just sent forget stat)
10 P ELSE B0 CHNL C@ OR MLD (else send status byte)
11 P ENDIF MLD 1 ?CTL C! MLD ;
12 P : PTCH (x---| send midi pitch bend value x)
13 P E0 CHNL C@ OR MLD MLD ;
14 P : SUS (x---| send midi sustain, FF-ON, 0-OFF)
15 P 40 CONT ; -->

This screen has all the Midi Commands. The basic word, MLD (midi load), sends out
one byte of Midi data. The other words are based on the Midi software specifications.

The word CONT takes care of most of the continuous controller data. Since continuous
controllers tend to send out long streams of data at a time, the midi specifications allow you to
bypass the normal format of status byte followed by data byte. In the word CONT, after the
first status/data pair is sent (B0, data) only the data byte is sent for any remaining uninterrupted
controller data.

MIDI Trumpet
8

7

Screen 6

0 P : SEND (n---| send continuous controller #n value)
1 P DUP CV C@ OVER MCV C@ OVER - ABS
2 P (compare current CV value with last one read)
3 P 2 < IF DROP DROP (do nothing if change < 2)
4 P ELSE SWAP 2DUP MCV C! (else store new value)
5 P CTL C@ CONT ENDIF ; (and send midi control value)
6 P : READ (---| read pushbuttons and continuous controllers)
7 P 0 ?CTL C!
8 P 10 PC@ KEYS C@ = (test for change in pshbuttons)
9 P 3 0 DO I AIN (read each of the 4 contin controls)
10 P 2/ I CV C! (shift out lsb, store 7-bit midi val)
11 P I SEND LOOP (send new control value out midi)
12 P IF ELSE (return to test after keys have settled)
13 P 10 PC@ KEYS C! ENDIF ; (read keys again and store)
14 P -->
15 P

This screen is the heart of the Midi Trumpet. Five of the switches are read and stored,
and the continuous controllers are read and sent out the Midi port. The READ word first tests
for changes in the pushbuttons. If a change is detected the program first waits for the keys to
settle before storing the new values in the variable KEYS. During the wait the continuous
controllers are read (AIN) and stored in CV. Notice that the least significant bit of the 8-bit
controller value is thrown away (AIN 2/) since the Midi data accepts only a 7-bit value.

The continuous controller analog to digital conversion takes a relatively long time (200
microseconds). If you are not using the pedal you can cycle through only the first 3 controllers
in the DO LOOP to save some time (3 0 DO instead of 4 0 DO). Notice also that the amount of
continuous data sent out is cut down by sending a value only if it has changed by 2 or more.

MIDI Trumpet
9

8

Screen 7

0 P : DOIT CASE
1 P 1 OF CSUS C@ IF 0 SUS 0 CSUS C!
2 P ELSE FF DUP SUS CSUS C!
3 P ENDIF ENDOF
4 P 2 OF 10 PC@ 18 AND SETOCT ENDOF
5 P 4 OF 10 PC@ 18 AND 2/ 2/ 2/ PROG ENDOF
6 P ENDCASE ;
7 P 0 VARIABLE CHK
8 P : SPECIAL
9 P 20 PC@ FF XOR 7 AND DUP IF
10 P CHK C@ IF DOIT 0 CHK C! ELSE DROP ENDIF
11 P ELSE DROP 1 CHK C! ENDIF ;
12 P -->
13 P
14 P
15 P

This is one of the more "fun" programming parts of the Midi Trumpet.. There are 3
switches on the Trumpet which are not being used for pitch information. They can be
programmed for any function you desire. I have chosen three possible applications but I
encourage you to try your own.

The first of the green pushbuttons in line with the valves is programmed to toggle the
sustain off and on. The second key is used along with the two side buttons to change the octave
ranges - middle range, down 2 octaves, down 1 octave, and up one octave (see SETOCT on
screen 4, the fourth and fifth bit go low when the key is pushed). The third key is used along
with the two side buttons to change the synthesizer program from 0 to 3. The DOIT word sets
up these three special key functions.

Note that the side buttons must be pressed and held while the special key is pressed.
Think of the special key as entering the value being held on the two side buttons.

The SPECIAL word (special function key) implements the DOIT word. A check (CHK)
is made when a special key is first pressed and then again when is it released. The check is used
to ensure that the Midi info for the special key is sent only once while the key is down.
(Without this the sustain would be cycled on and off rapidly while the key is down.)

MIDI Trumpet
10

9

Screen 8

0 P : KEYCALC (calculate pitch from note table and coct)
1 P KEYS C@ F8 XOR 1F AND
2 P NOTE C@ COCT C@ + PITCH C! ;
3 P : SETVEL
4 P 0 CV C@ 10 + 7F MIN VEL C! ;
5 P : KEYON
6 P VEL C@ PITCH C@ ON 1 ?ON C! KEYS C@ MKEYS C! ;
7 P : KEYOFF
8 P PITCH C@ OFF 0 ?ON C! ;
9 P -->
10 P
11 P
12 P
13 P
14 P
15 P

This screen defines some words used in the main horn program coming up on the next
screen. The KEYCALC word calculates the key value for a Midi Note On command by looking
up a pitch value from the NOTE table and then adding an octave offset value. The SETVEL
word calculates a key velocity (initial loudness) value for a Midi Note On command using the
breath value stored in CV(0) during the READ cycle. The next two words use the Keycalc and
Setvel values to actually send a Midi Note On command or a Midi Note Off command.

MIDI Trumpet
11

10

Screen 9

0 P : HORN (--- | Main Program)
1 P
2 P CR ." Midi Trumpet " BEGIN
3 P READ SPECIAL 0 CV C@ ?ON C@
4 P IF (breath) OFF_TH >
5 P IF MKEYS C@ KEYS C@ =
6 P IF ELSE KEYOFF KEYCALC 0 CV C@ VEL C!
7 P KEYON ENDIF
8 P ELSE KEYOFF
9 P ENDIF
10 P ELSE (breath) ON_TH >
11 P IF KEYCALC SETVEL KEYON ENDIF
12 P ENDIF
13 P ?TERMINAL UNTIL ." Stop program " ;
14 P HEX 0 801A C! HORN
15 P ;S

Finally, here is the main horn program. All the words between BEGIN and UNTIL are
repeated forever or until someone sends something over the serial line by hitting a key on the
computer terminal (?TERMINAL).

Inside the loop, first the trumpet keys are read and one round of continuous controller
data is sent out the Midi port (READ); then the special keys are checked and executed. Then the
breath value is compared to the on and off thresholds. If no note is currently on and the breath
value is above the on-threshold, then a Key On Midi event is executed (lines 10 and 11). If a
note is currently on and breath is still above the off-threshold but the key value has changed, then
the old note is turned off (KEYOFF) and a new Midi Key On command is executed (lines 5, 6
and 7). Last of all, if a note is currently on (?ON=1) but the breath has gone below the off-
threshold, then the note is turned off (line 8).

Line 14 clears the terminal buffer and then executes the HORN program.

MIDI Trumpet
12

MIDI Trumpet Program

0. : TABLE <BUILDS 0 DO C, LOOP DOES> + ; DECIMAL
1. 0 0 0 0 4 TABLE CV (newly read controller values)
2. 0 0 0 0 4 TABLE MCV (midi'd controller values)
3. 4 7 1 2 4 TABLE CTL (midi controller #'s used)
4. (breath, modulation, volume, foot controller)
5. 78 81 79 77 80 83 82 84 73 76 74 74 72 75 72 72
6. 66 69 71 70 68 71 67 67 61 64 62 65 63 59 60 60
7. 32 TABLE NOTE (see Trumpet Fingering Charts)
8. 0 VARIABLE PRG (current midi prog number)
9. 0 VARIABLE KEYS (newly read pushbuttons)
10. 0 VARIABLE MKEYS (midi'd pushbuttons)
11. 0 VARIABLE PITCH (calculated midi key value)
12. 0 VARIABLE CHNL (midi channel)
13. 0 VARIABLE ?ON (note on = 1, note off = 0)
14. 0 VARIABLE ?CTL (true if midi control was sent last)
15. -->

0. DECIMAL
1. 0 VARIABLE VEL (midi key velocity)
2. 0 VARIABLE CSUS (current sustain value)
3. 0 VARIABLE COCT (current octave offset)
4. : SETOCT CASE (set oct with 2 side-mount keys)
5. 24 OF 0 COCT C! ENDOF
6. 16 OF 24 MINUS COCT C! ENDOF
7. 8 OF 12 MINUS COCT C! ENDOF
8. 0 OF 12 COCT C! ENDOF ENDCASE ;
9. HEX
10. 10 CONSTANT OFF_TH 12 CONSTANT ON_TH
11. -->
12.
13.
14.
15.

MIDI Trumpet
13

0. : MLD (x---| send midi value x)
1. 10 PC! 0 0 PC! 1 0 PC! ;
2. : ON (velocity, key# ---| send midi key-on)
3. 90 CHNL C@ OR MLD MLD MLD ; (status, key#, vel)
4. : OFF (key#---| send midi key-off)
5. 80 CHNL C@ OR MLD MLD 0 MLD ;
6. : PROG (p---| send midi program change)
7. C0 CHNL C@ OR MLD MLD ; (status, program #)
8. : CONT (val,ctl---| send midi control change)
9. ?CTL C@ IF (if cont was just sent forget stat)
10. ELSE B0 CHNL C@ OR MLD (else send status byte)
11. ENDIF MLD 1 ?CTL C! MLD ;
12. : PTCH (x---| send midi pitch bend value x)
13. E0 CHNL C@ OR MLD MLD ;
14. : SUS (x---| send midi sustain, FF-ON, 0-OFF)
15. 40 CONT ; -->

0. : SEND (n---| send continuous controller #n value)
1. DUP CV C@ OVER MCV C@ OVER - ABS
2. (compare current CV value with last one read)
3. 2 < IF DROP DROP (do nothing if change < 2)
4. ELSE SWAP 2DUP MCV C! (else store new value)
5. CTL C@ CONT ENDIF ; (and send midi control value)
6. : READ (---| read pushbuttons and continuous controllers)
7. 0 ?CTL C!
8. 10 PC@ KEYS C@ = (test for change in pshbuttons)
9. 4 0 DO I AIN (read each of the 4 contin controls)
10. 2/ I CV C! (shift out lsb, store 7-bit midi val)
11. I SEND LOOP (send new control value out midi)
12. IF ELSE (return to test after keys have settled)
13. 10 PC@ KEYS C! ENDIF ; (read keys again and store)
14. -->
15.

MIDI Trumpet
14

0. : DOIT CASE
1. 1 OF CSUS C@ IF 0 SUS 0 CSUS C!
2. ELSE FF DUP SUS CSUS C!
3. ENDIF ENDOF
4. 2 OF 10 PC@ 18 AND SETOCT ENDOF
5. 4 OF 10 PC@ 18 AND 2/ 2/ 2/ PROG ENDOF
6. ENDCASE ;
7. 0 VARIABLE CHK
8. : SPECIAL (special function keys)
9. 20 PC@ FF XOR 7 AND DUP IF
10. CHK C@ IF DOIT 0 CHK C! ELSE DROP ENDIF
11. ELSE DROP 1 CHK C! ENDIF ;
12.-->
13.
14.
15.
0. : KEYCALC (calculate pitch from note table and coct)
1.
2. KEYS C@ F8 XOR 1F AND
3. NOTE C@ COCT C@ + PITCH C! ;
4. (: BREATH 0 CV C@ ;)
5. : SETVEL
6. 0 CV C@ 10 + 7F MIN VEL C! ;
7. : KEYON
8. VEL C@ PITCH C@ ON 1 ?ON C! KEYS C@ MKEYS C! ;
9. : KEYOFF
10 PITCH C@ OFF 0 ?ON C! ;
11. -->
12.
13.
14.
15.

MIDI Trumpet
15

0. : HORN (--- | Main Program)
1.
2. CR ." Midi Trumpet " BEGIN
3. READ SPECIAL 0 CV C@ ?ON C@
4. IF (breath) OFF_TH >
5. IF MKEYS C@ KEYS C@ =
6. IF ELSE KEYOFF KEYCALC 0 CV C@ VEL C!
7. KEYON ENDIF
8. ELSE KEYOFF
9. ENDIF
10. ELSE (breath) ON_TH >
11. IF KEYCALC SETVEL KEYON ENDIF
12. ENDIF
13. ?TERMINAL UNTIL ". Stop program " ;
14. HEX 0 801A C!(so nothing is waiting for ?terminal) HORN
15. ;S

MIDI Trumpet
16

Midi Trumpet Test Programs
HEX (All numbers shown are in base 16, hexidecimal)

PUSHBUTTON TEST
: PTST (shows runnining status of port 10H)

CR BEGIN
10 PC@ F8 XOR . (print value of port# 20)
D EMIT (return screen cursor)
?TERMINAL (stop program if any terminal key is hit)

UNTIL ; (else repeat the program)

CONTINUOUS CONTROLLER TEST
: CCTST (x---| running status of controllers, x= 0,1,2, or 3)

CR BEGIN DUP AIN . D EMIT 170 0 DO LOOP
?TERMINAL UNTIL DROP ;

 MIDI TEST WORDS
: MLD (x---| send value x out the midi port)

10 PC! (loading x) 0 0 PC! 1 0 PC! (load pulse) ;
: KEYON (x---| send midi key on for note x)

90 MLD (send keyon status byte, midi channel = 0)
 MLD (send key number x, 0 to 127 only please)
40 MLD (send key velocity of 40) ;

: KEYOFF (x---| send midi key off for note x)
80 MLD MLD 0 MLD (status=80, key#=x, velocity=0) ;

: PROG (x---| send midi program change)
C0 MLD MLD (status=C0, prog#=x) ;

(Loading a simple Autostart program into EEPROM's Screen 3)
(Always turn on micro with WRT ENB switch down)

EDITOR DECIMAL
3 LIST
0 P : GREET ." HELLO EVERYBODY " CR CR ;
1 P GREET
2 P ;S
3 LIST
(The program is in a RAM buffer memory. To load it into the EEPROM's Screen
#3, turn on the WRT ENB switch in the up position and Flush)
FLUSH
(Turn off the WRT ENB switch)
(Now whenever you reset or power on, the GREET word will be loaded and
executed.)

MIDI Trumpet
17

Midi Trumpet Memory Map
0000 to 7FFF U9 ROM 32K FORTH
8000 to 9FFF U12 RAM Variables, Stacks, Dictionary, 2 Screens
A000 to BFFF U10 EEPROM Screens 3 through 10

8000 to 83FF Variables and Stacks
8400 to 87FF Start of User Dictionary Space
8800 to 8BFF
8C00 to 8FFF
9000 to 97FF Editor Screen Buffers
9800 to 9BFF Screen #1
9C00 to 9FFF Screen #2

A000 Screen 3 (Autostart if Colon ASCII# is at A000)
A400 Screen 4
A800 Screen 5
AC00 Screen 6
B000 Screen 7
B400 Screen 8
B800 Screen 9
BC00 Screen 10

(Hardware note: Circuit diagrams show the Forth ROM residing in
8000 to FFFF since the 8088 reset vectors must be at ROM address
FFFFF0. The ROM software must be inverting address bit#15 to give

the memory map shown above.)

MIDI Trumpet
18

MIDI TRUMPET CONNECTIONS

Trumpet to Micro (D25 male to D25 male cord)

 13 12 11 10 9 8 7 6 5 4 3 2 1
 25 24 23 22 21 20 19 18 17 16 15 14

Ground - 1,2,3,14,15, 12,13,24,25

4 - minus 5 volts (for preamp)
5 - trumpet amplitude
6 - slider 1
7 -
8 - pushbutton 7
9 - pushbutton 0
10 - pushbutton 1
11 - pushbutton 2
23 - pushbutton 5
22 - pushbutton 4
21 - pushbutton 3
20 - pushbutton 6
19 - plus 4 volts (for sliders)
18 - slider 2
17 - trumpet signal (from preamp)
16 - plus 12 volts (for preamp)

Micro to Interface board (DIP ribbon cables)

J1 - ADC
1-AD0(pickup volume), 2-AD1(slider1), 3-AD2(slider2),
4-AD3(pedal), 9-gnd, 14-Ref/2, 10-13 empty, 15-16 empty

J2 - 1-5 in from trumpet pushbuttons 0,1,2,6,7
9-16 midi out to UART pins 26-33

J3 - 1-3 in from trumpet pushbuttons 3,4,5
J5 - 1-gnd, 2-, 3-500Khz to UART, 4-gnd,

5-, 6-8 Power GND, 9-, 10-WRT ENB, 11-, 12-wrt pulse to UART, 13-Reset
14-16 Power 5v.

Interface Board to Front Panel

Reset - 14
Midi Outs - 15, 16 5v pullups - 1,2
Pedal - 4 +5v - 5
Trumpet pickup - 7 Gnd - 8
Write Enable Switch - 6

MIDI Trumpet
19

Midi Trumpet Controls

Pushbuttons

There are 8 pushbuttons on the Trumpet - 3 mounted inside the valves, 3 more on top, 2 mounted
sideways. The pushbuttons can be read from the microcomputer as an 8-bit value with each bit representing one of
the 8 pushbuttons. The command, 10 PC! (10 is a hexadecimal number) will read pushbuttons 0,1,2,7,8 and 20
PC! will read pushbuttons 3, 4, 5 (the value is pushed onto the stack).

Each of the 8 bits is either high or low. For the three valves the corresponding bit is 1 when the valve is
down and 0 when the valve is up. For the other bushbuttons, the corresponding bit is 0 when the key is pressed.

Each key has been assigned a bit position in one of two 8-bit locations. The three valves are the 3 least
significant bits of PC address 10 hex, with numerical weights of 1, 2, and 4; while the two side mounted switches
have weights of 8 and 10(hex) at the same location. The three top pushbuttons are the least significant bits at PC
20 with weights of 1, 2, and 4.

For example, a value of E2 hex read from the stack after the command 10 PC! translates to the bit
pattern 111 00 010 which indicates that the middle valve is down and the two side pushbuttons are down (the 3
top bits are not connected to any keys and thus are always high).

Continuous Controllers

The Trumpet has 4 continuous controllers. Controller#0 is derived from the pickup on the mouthpiece.
The pickup signal is amplified and then sent to an envelope follower to give a control voltage which rises and falls
with the trumpet loudness. Controllers 1 and 2 are the two marked sliders mounted on the trumpet. Controller#3
is a pedal which can be connected at the micro's front panel.

Each controller can be connected to an Analog to Digital Converter within the microcomputer. The 8-bit
value can be read by using the command, n AIN, after which the value for controller #n is left on the Forth stack.

Midi Output

The Microcomputer can put out midi data based on horn activity or independently. It's all in how you
program it. To send an 8-bit Midi value first load the value into port 10 (hex) and then pulse port 0 (0 0 PC! 1 0
PC!). Simpler yet, use the MLD general purpose midi load word.

Read the Midi spec sheet to see how Midi data is formatted.

1 2 4 1 2 4

10
8

c0
c1
c2

c3

1, 2, 4, 8, and 10 are read from10 PC@.

1, 2, and 4 are read from 20 PC@.

#0 #1 #2 #3 #4#5

#6
#7

MIDI Trumpet
20

Trumpet Fingering Charts

Valves Trumpet Overtones

7 (all open) F#1 C#1 F#2 A#2 C#2 F#3
6 A1 E1 A2 (440Hz) C#2 E2 A3
5 G1 D1 G2 B2 D2 G3
4 A#1 F1 A#2 D2 F2 A#3
3 G#1 D#1 G32 C2 D#2 G#3
2 B1 F#2 B2 D#2 F#3 B3
1
0 (all closed) C1 (mid C) G2 C2 E2 G3 C3

Scheme for translating valve positions to Midi Key numbers, using the two
side-mounted switches for extra "overtone" information. (Midi Key Number /
Key pitch = 3 valve positions)

Position 00 Position 01 Position 10 Position 11
59/B1 = 2 66/F#2 = 7 72/C2 = 0,3 77/F2 = 4
60/C1 = 0 67/G2 = 0 73/C#2 = 7 78/F#3 = 7
61/C#1 = 7 68/G#2 = 3 74/D2 = 4,5 79/G3 = 5
62/D1 = 5 69/A2 = 6 75/D#2 = 2 80/G#3 = 3
63/D#1 = 3 70/A#2 = 4 76/E2 = 6 81/A3 = 6
64/E1 = 6 71/B2 = 2,5 82/A#3 = ?
65/F1 = 4 83/B3 = 2

84/C3 = 0

Table above rearranged with Midi Key numbers. To be used as the Note Table in
Trumpet program.

Valves 00 01 10 11

0 60 67 72 84
1 - - - -
2 59 71 75 83
3 63 68 72 80
4 65 70 74 77
5 62 71 74 79
6 64 69 76 81
7 61 66 73 78

MIDI Trumpet
21

9

10

11

12

13

14

15

16

8

7

6

5

4

3

2

1

2
0
1
1

75k 1%

75k 1%

47k 1%

47k 1%

1k

220Ω

470k

0.1µF

0.1µF

0.1µF

Preamp and Follower for MIDI Trumpet

Input from
Barcus Barry

Pickup

Signal Out

-5v

+12v

-
+

-
+

10k

0.1µF

-
+

10k

0.1µF

-
+

10k

0.1µF

2

3
1

9

10 8

6

5
7

13

12 14
AD0

AD1

AD2

AD3

30µF

Voltage Follower Out

Slide Pot 1

Slide Pot 2

Pedal

50k10k

10k

1k

-5v

0.1µF

1k

+5v

4

11

Sensitivity

Offset

To
 T

he
 A

na
lo

g
to

 D
ig

ita
l C

on
ve

rt
er

MIDI Trumpet
22

MIDI Trumpet
23

MIDI Trumpet
24

	Introduction
	Description
	Program
	Setup
	Circuits

