

1

Alternative
Performer Interfaces
for MIDI synthesizers

by

Gary Lee Nelson, Professor
and

John Talbert, Music Engineer

TIMARA Department
Conservatory of Music

Oberlin College

2

Oberlin Conservatory
TIMARA Department

Alternative Performance Devices

How would you like to play a horn that commands a full orchestra of sounds
with a single breath? Or perhaps you would prefer painting sound in the air with a wave
of your hands or dancing across the room with every movement of your body echoed
by some nuance in the music. These alternative performance techniques can be based
on a common technology that is already available. By the end of this article you will
have the means to create instruments tailored to your vision of composition and
performance.

New Instruments

Many new instruments have reached the experimental stage and some are
already in commercial production. Michel Waisvisz's "Hands", Airdrums by Palmtree
Instruments, a Midi Saxophone by Artisyn are freeing electronic music from the sole
domain of the keyboard player.

We will introduce some techniques that can form the basis of other new
instruments. Sounds will be produced by your own MIDI synthesizers. How you
control those sounds depends on your implementation of the system outlined in Figure
1. You create your own performance controller and then interface it with a
microcomputer. The microcomputer translates your actions into MIDI commands and
passes those commands on to the synthesizers. Let's take a look at the system one part
at a time.

Let me introduce you to a scheme which can form the basis for creating
amazingly diverse new instruments. It is really quite simple and at the same time
extremely flexible. Figure 1 shows the gist of it. The actual sounds are produced by
your own Midi-equipped synthesizers. How you get at those sounds, however, is
covered by the device shown in the figure. You create your own performance device and
then interface it to a microcomputer which translates your actions into midi sound
commands. Let's take a look at it one part at a time.

Performance Devices

The "performance device" of our new instrument can be the most creative part
of the system. To the audience this is the instrument. For us, it is a collection of
switches and transducers tailored to our particular performance preferences. You can
use push buttons, toggle switches, slide controls, turn pots, foot pedals, ribbons,

3

pressure transducers, and strain gauges. You can use detectors that respond to light,
ultrasonic signals, and infrared waves. The many ways of connecting these controls to
the performer suggest a broad range of methods for playing synthesizers. Some of these
devices can be very easy to implement - the switches and potentiometers, for instance.
Some of the other transducers will take a bit more electronics. We will have a closer
look at some specific cases later when we talk about our own performance device, the
MIDI Horn.

The Interface

The analog to digital conversion (ADC) section of our system translates the
instrument's switch and transducer outputs to a form that the microcomputer can
understand. The switches can be connected directly to the microcomputer's I/O lines.
The open or closed connection in a switch is read as a single high or low digital bit by
the microcomputer. For the other devices we add circuitry to produce continuous
changes in voltage over a range of 0 to 5 volts. We send these control voltages to an
ADC that transforms the voltage into discrete digital values in a range of 0 to 255.
These digital number are interpreted as performance actions by the program running in
the microcomputer.

The microcomputer continually scans the changing outputs from the
performance device and converts them into MIDI commands. It translates the gestures
of the performer into musical responses. The precise nature of the responses depend
on how you program the microcomputer. Programs can be changed easily to make
instruments grow and change as our performance techniques develop. Program changes
might be made to fine tune the microcomputer's response to particular controllers or a
new program could transform the device into an entirely different instrument. Programs
may be structured so that the instrument changes characteristics during a performance.
Through the following discussion, we must remember that we are undertaking
instrument design at a level that is more fundamental than programming a voice on a
synthesizer. We are reconsidering the assumptions and prejudices about the
relationship between performers and their musical tools.

THE MIDI HORN

Wind players have, to a great extent, been left out of the MIDI revolution.
The simple addition of a breath controller to a keyboard synthesizer does not solve the
problem. Wind players become proficient at synchronizing tongue, air flow, and finger
muscles into a distinctive set of performance gestures. Let's look at our design for an
instrument that allows brass players to play MIDI synthesizers with idiomatic modes
of expression. We call it the MIDI Horn. (See Figure 2).

4

On one end of the horn is a breath controller. This device contains a pressure
transducer that changes breath pressure into a voltage which can be read by the
microcomputer. Brass players buzz their lips at different frequencies to accomplish
changes in register and ranges of at least three octaves are common. However, the MIDI
Horn does not respond to buzzing but only to air pressure. Also, unlike brass
instruments, the tube is closed so that no air actually flows through it. If the performer
is more comfortable with a brass mouthpiece, one can be attached to the breath
controller tubing either directly, or with a short piece of shrink wrap tubing. The
performer's favorite mouthpiece can serve to focus the air flow but the size doesn't
matter.

 The breath controller has been programmed to perform its normal MIDI
function (Breath control #2) but it has also been given the job of determining when
notes start and stop. When the breath pressure rises above a certain threshold a Midi
Note-On command is sent The note remains on until the breath pressure drops below
the threshold again, causing a Midi Note-Off to be sent. The initial volume of the note
is determined by how fast the pressure is changing when the threshold is passed. The
actual Note value is determined by what keys, on the top of the instrument, are pressed
when the threshold is passed. The threshold can be adjusted by a small potentiometer
on the horn, and also on the microcomputer circuit board.

After a Note-On event, the Horn is programmed to continue watching for
changes in pressure at the transducer. Whenever a change is detected, the new pressure
value is sent out in the form of MIDI Controller #2 data. This continues until the
pressure drops below the threshold causing a Midi Note-Off to be sent. Most
synthesizers can be setup to use Midi Control#2 data to change such sound parameters
as volume and/or modulation depth - check your synthesizer manual.

On the top of the instrument are eight push buttons. Computer keyboard
switches with a fairly deep stroke are used because they approximate the feel of brass
instrument valves and because they are designed for extended use. The top group of
four keys has been programmed to simulate brass fingering for twelve notes in an
octave. Trumpet players may be a bit disturbed but most other brass players are used
to four valves. Each key lowers the pitch of the instrument by a number of semitones
as follows:

first valve 2 semitones
second valve 1 semitone
third valve 3 semitones
fourth valve 5 semitones

5

These valves used singly and in combination are suitable for producing a chromatic scale
of 12 different pitches. The usual alternate fingerings are preserved for the convenience
of the brass performer.

One additional function of the top four switches is to set the MIDI Channel
number. The position of these 4 keys is read once when the microcomputer is powered
on or the Reset button is pressed. The value read is then used for all subsequent MIDI
data.

The next set of 3 keys is programmed to control register by allowing the
selection of eight different octaves. The fingering pattern is identical to that of the first
three valves in the group of four. The interval that is subtracted is an octave rather than
a semitone. The third valve by itself is an alternate fingering for the 1-2 combination
and has been appropriated to reach the lowest octave. Several players who have tried
this scheme have adjusted very quickly to these small deviations from normal brass
fingering technique.

One final key at the bottom is operated by the pinkie finger and has been
programmed to control MIDI voice changes. When this key is pressed the upper seven
keys are interpreted in a binary pattern and entered as a MIDI Program number (0 to
127). The performer can thus change timbre without removing the hands from the
instrument.

Additional controllers on the back of the Horn are operated by the player's
thumbs. These consist of 8 push-on/push-off switches and two joysticks. Changes in
the back switches are sent out as MIDI Control numbers 84 to 91. Changes in the
joysticks are sent out as MIDI Control numbers 16 to 19, configured as follows:

top joystick, up-down Control #16
top joystick, left-right Control #17
bottom joystick, up-down Control #18
bottom joystick, left-right Control #19

As with the MIDI Breath Control, these controllers can be set up at the synthesizer to
control various synthesizer parameters.

The Horn Circuits

The wiring for the Horn is not too complicated. The front 8 keys are
momentary switches that are normally open. One side of each switch is grounded while
the other side goes to Microcomputer Port F at the interface box. The back 8 push-
on/push-off keys are wired similarly and go to Microcomputer Port G at the interface
box.

Each joystick consists of two pots wired to ground and a conditioned voltage
supply. The pot outputs go from zero to about 4 volts as the joystick is moved. The 4

6

joystick continuous voltage outputs are sent to an Analog to Digital Converter at the
interface box.

The Series PX136 transducer used for breath pressure is made by Omega
Engineering, Inc. An opamp circuit with a sensitivity adjustment pot amplifies the
pressure signal before sending it off to an additional amplifier and, eventually, an Analog
to Digital Converter at the interface box.

Cabling between the horn and the interface box containing the microprocessor
uses a standard computer cable with male D25 plugs at each end. A diagram of the
cable shows the pin-outs for the 16 switch outputs, the 5 continuous controller
outputs, and the 5 volt power and ground.

The Interface Circuits

The Interface box houses the microprocessor that converts the signals from
the performance devices to MIDI output data. The front panel of the interface box has
a power on/off switch, a power indicator lamp, a D25 plug for connection to the Horn
or similar device, and a Reset push-button for restarting the main program. (It also has
some features used in the program development process: a couple switches for loading
programs into an EEProm, and a D25 plug wired for RS232 serial communication
between the interface microcomputer and a terminal.) The rear panel has a jack for an
AC power transformer, two MIDI output jacks, and a non-implemented MIDI input
jack.

The rear panel of the interface box also has jacks for 4 controller devices which
are in addition to the MIDI Horn controls. There are 2 mono 1/4" phone jacks for
switch type devices and two stereo 1/4" jacks for continuous controller type devices.
They are programmed to send out MIDI Control data as follows:

Top Switch Jack Control #64
Bottom Switch Jack Control #65
Top Pedal Jack Control #1
Bottom Switch Jack Control #4

The 2 switch jacks are Mono 1/4" phone. Any action which connects or disconnects
the tip from the sleeve in the jack will cause a MIDI control signal to be generated.

The 2 pedal jacks are Stereo 1/4" phone. These are meant for continuous controller
devices that put out a voltage variable between 0 and 5 volts. This variable voltage from
the device must be connected to the ring of the stereo jack. The tip of the stereo jack
provides 5 volts and the sleeve provides ground from the interface power supply for
use by the device. See the extra sheets for ideas on how to build simple light and
pressure sensors.

A total of 18 switch signals and 7 continuous controller signals go into the
Interface box for processing.

7

The connection for the switches is fairly simple: Each of the 18 switch lines is
connected directly to one line of an input port on the microprocessor chip. A pull up
resistor tied to 5 volts exists at each of these input port lines within the microprocessor
so that normally open keys rest at a high of 5 volts. When a key is depressed its line is
directly connected to ground forcing it to 0 volts. The state of the switches can be read
at any time by the processor. The program then determines what action is taken (i.e.
what MIDI data is sent) whenever the state of a switch changes.

The interface required for the 7 continuous controller signals is more involved
as seen in the Midi Horn ADC circuit diagram. Each continuous controller signal is first
filtered to take out any changes or glitches in the signal faster than about a millisecond.
After an opamp buffer it enters an Analog to Digital Converter (ADC 0809) which
converts each of the 7 continuous controller signals into an 8 bit digital word with
values from 0 to 255. The ADC runs continuously converting one signal at a time and
letting the microprocessor know when a conversion is complete so that it can pick up
the results and store it. Each conversion takes about a tenth of a millisecond. This
results in each signal being sampled about once a millisecond.

The MIDI signals are generated by a 6850 serial interface chip as shown in the
MIDI Horn / Midi Interface circuit diagram. The microprocessor feeds the 6850 with
MIDI data as dictated by the program. The 6850 chip then outputs the data in serial
form at the MIDI baud rate (31.25K).

Finally, the bulk of the circuitry in the interface box is the microcomputer - an
NMIX-0012 single board microcomputer from New Micros Inc., Texas using a R65F12
microprocessor.

The Program

At this point in our description the Midi Horn we have performance signals
ready to be read by a microcomputer and we have a synthesizer waiting for midi
commands. The only thing needed now is a program to make the link. Our MIDI Horn
program is structured as a loop that reads signals from the performance device and
translates them into MIDI commands. We decided to use Forth - a language that is fast
and easy to work with. Forth was originally developed for real time processing and we
found it to be ideal for our time-critical program loop.

The Rockwell 65F12 is incorporated into a single board computer marketed by
New Micros Inc. The 65F12 chip is based on the 6502 processor used in the old
Commodore, Atari and Apple II microcomputers. The processor includes its own
RAM memory and a kernel of Forth subroutines in ROM.

Forth code is written by constructing subroutines, or "words" in Forth jargon.
Each construction you see in the listing that is delimited by a colon at the start and a

8

semicolon at the end is the definition of a Forth word. The name for the defined word
immediately follows the colon. Once defined, a word is added to the "dictionary" and
can be used as part of subsequent definitions. Even if you don't know Forth the
following comments should give you a general idea of the program logic.

The program that runs our instrument is found in the word HORN (see Listing
1) . Horn is composed of words previously defined along with other words that are
defined in the Forth Kernel in ROM. The HORN program is automatically run when
the interface box is turned on or the reset switch is pressed. The program was
developed on this same board using its serial interface connected to a desktop computer
running a terminal emulation program. Each word developed from the terminal can be
run and tested by typing the word and then a carriage return.

The main program word HORN is made up of many previously defined words
which are in turn made up of more basic words. Some of the words require parameters
to do their jobs. Others may produce results that they want to communicate to the
program. The word ON, for example, requires a key velocity, key number, and MIDI
channel number. A note will be turned on in the synthesizer that is connected to your
MIDI output when ON is executed. Turning notes off requires a similar action. This
brief description of Forth should enable you to follow our description of the program.

The Horn Program

Figure 4 shows a flow diagram for the main program word, HORN. Note the
correspondence between the definition of HORN in the listing and this flow diagram.
The program is a loop that reads the MIDI Horn signals, checks the bottom key for a
possible voice change, and then asks some questions to determine the next program
branch. The program first asks whether a note is currently sounding. If the answer is
yes we follow the left side of the diagram to check the performer's breath pressure. If
the breath pressure drops below the "off threshold", the program sends a MIDI key off
command. If the player changes fingering in the same breath, the program will send a
MIDI key off command for the note in progress followed by a MIDI key on command
for the new note. While a note is sounding, the player's breath pressure is transmitted
to MIDI out as a continuous control change for the synthesizer. The other side of the
flow diagram is much simpler. If no note is currently sounding the player's breath
pressure is checked against an "on threshold". If the breath pressure is above the
threshold, the program reads the seven front keys to determine pitch. A note is started
with a MIDI key on command.

See the Listing "Horn Program" for the actual Forth subroutines that make up the main
HORN program. These subroutines have been compiled and stored in the ROM
memory chip labeled as HORN 1.0. Comments are written between parenthesis.

An Application

9

Professor Gary Nelson has used the MIDI Horn extensively in performances
with a system that includes a Macintosh computer and several synthesizers such as the
Yamaha TX816 and EMU Proteus modules.

MIDI commands from the horn other pedals connected to the interface box are
interpreted by an interactive MAX (by Opcode) program running on the Macintosh.
The MAX program recognizes MIDI commands received from the Horn and calls user-
written subroutines to handle each MIDI event. Events can be echoed immediately,
stored for later use, or transformed according to some compositional plan.

Pressing a key may trigger a prerecorded sequence of notes stored in the
Macintosh, or a composition algorithm that computes notes on the fly. Pressing the
sustain pedal may throw the sequence into reverse by setting a retrograde flag.
Likewise, the portamento pedal can be used for inversion or some other toggle function.
The key number fingered on the MIDI Horn can set the bass pitch for transposing the
sequence. In short, the MIDI signals coming into the Macintosh are simple stimuli that
can be interpreted any way your musical fancy dictates. The possibilities suggested in
our discussion of transformations in the Forth computer are greatly increased by the
added computational stage of a Macintosh running MAX placed between the MIDI
Horn and your orchestra of synthesizers.

Conclusion

We hope that we have inspired you to create your own MIDI performance
interface. In computer music, esthetic ideas are shaped by both hardware and software
but, most of all, they are shaped by the fantasy of the artist. Composers and
performers must take an active role in evolving process to show industry and the
commercial world where real progress is to be made.

PERFORMER

PERFORMACE DEVICE

ANALOG TO DIGITAL
INTERFACE

MICROCOMPUTER / MIDI OUT

MIDI SYNTHESIZERS

Figure 1. The Structure of a New MIDI Instrument

F6
G7

G6

G5

G4

G3

G2

G1

G0

F5

F4

F3

F2

F1

F0

F7

FIGURE 2 - Switches and Joysticks

MIDI Horn
Note Table

Fingering
1 2 3 4

Key
Value

- - - - 12
- * - - 11
* - - - 10
* * - - 9
- - * - 9
- * * - 8
* - * - 7
- - - * 7
* * * - 6
- * - * 6
* - - * 5
- - * * 4
* * - * 4
- * * * 3
* - * * 2
* * * * 1

MIDI Horn
Octave Table

Fingering
1 2 3

Key
Value

- - - 96
- * - 84
* - - 72
* * - 60
- * * 48
* - * 36
* * * 24
- - * 12

* Button Pressed

Key Number = Note + Octave

 FIGURE 3 - Fingerings

READ HORN VALUES

PROGRAM CHANGE

IS A NOTE ON ?

BREATH > ON THRESHOLD ?

SAME KEY AS LAST ONE ?

BREATH > OFF THRESHOLD ?

SEND MIDI
CONTROL

VALUE

TURN OLD
KEY OFF,

NEW KEY ON
TURN KEY OFF

YES NO

NO NOYES

YES

YES

NO

TURN KEY ON

FIGURE 4 - Program Flow Diagram

MIDI HORN CABLE
25 Pin D Plug

1 GND
2 ANAL 7, Bottom Joystick, side to side
3 ANAL 2, Top Joystick, side to side
4 --
5 G6
6 G4
7 G2
8 G0
9 F6

10 F4
11 F2
12 F0
13 GND

14 ANAL 0, Breath Control
15 ANAL 6, Bottom Joystick, up and down
16 ANAL 1, Top Joystick, up and down
17 G7
18 G5
19 G3
20 G1
21 F7
22 F5
23 F3
24 F1
25 +5v

FIGURE 5 - Horn Cable Connections

MIDI HORN
Controller Memory Addresses

Controller MIDI
Controller #

Computer
Address

Computer
Device

Analog to Digital Converter (01 xxx0 xxxx)

Breath Pressure 2 (2h) 0100h ADC 0
Top Joystick, up/down 16 (10h) 0101h ADC 1
Top Joystick, left/right 17 (11h) 0102h ADC 2

Unused 0103h ADC 3
Continuous Pedal 1 1 (1h) 0104h ADC 4
Continuous Pedal 2 4 (4h) 0105h ADC 5

Bottom Joystick,
up/down

18 (12h) 0106h ADC 6

Bottom Joystick,
left/right

19 (13h) 0107h ADC 7

Horn Pushbuttons on Micro Ports

Front Pushbuttons
bottom to top

bit 7 = Program Ld
bits 6-3 = Note#

bits 2-0 = Octave
Port F0 to F7 Mico Port F

Back PushOn/PushOff
bottom to top

84 to 91 Port G0 to G7 Micro Port G

Sustain Pedals 64 and 65 Port B0 and B1 Micro Port B

Serial MIDI 6850 UART Chip (01 xxx1 1xxx)

MIDI Out ----- 0118h

UART
 Control Reg.

setup with
MIDINIT

MIDI Out ----- 0119h UART Data
Load with MLD

FIGURE 6 - Horn Device Addresses

358

-

+

358

-

+

1M

1K

2

1

4

3

OFFSET400K

1M-3M

100K

0.1µF

6

5

4

7

8

3.5v

POWERS THE
JOYSTICKS

0.01v to 1.5v

OMEGA PX136
PRESSURE TRANSDUCER

MIDI HORN
PRESSURE TRANSDUCER

FIGURE 7 - Pressure Transducer

2

3

4

1

8

-
+100k

10k

0.1µF

-
+

10k

0.1µF

-
+

10k

0.1µF

-
+100k

10k

0.1µF

-
+100k

10k

0.1µF

-
+10k

0.1µF

24k 50k

-
+100k

10k

0.1µF

-
+

10k

13

12 14

9

10 8

6

5 7

2

3 1

13

12 14

9

10 8

6

5 7

2

3 1

IN7

IN6

IN5

IN4

IN2

IN1

IN0

PEDAL 2

PEDAL 0

BREATH

BOTTOM
JOYSTICK

TOP
JOYSTICK

TOP
JOYSTICK

BOTTOM
JOYSTICK

LM324
5v-pin 4

GND pin 11

5

4

3

2

1

28

27

26

12
+Ref

16
-Ref

11

13

2

3

5

6
1,4

7474
12

11

7

8
10,13

7474

ϕ2 = 2MHz

1MHz 500KHz

FIGURE 8 - ADC

OE

START

1
3
2

13 12
11

8 9
10

9
8

4
5
6

RR/W

CSEX

A4

23
24
25

21
20
19
18
08
15
14
17

---A2
---A1
---A0

---D7
---D6
---D5
---D4
---D3
---D2
---D1
---D0

16

7
EOC to PA1
High when Convert is Done

A
D
C

0
8
0
9

9

6
22

ALE

MIDI HORN

ANALOG TO DIGITAL
CONVERTER

9VAC-340ma or 5VDC-612ma

To Convert:

1. Write to single location (0100-0107)
To Start the Conversion

2. When done, (about 100µs) PA1 will
go high.

3. Read the result at any of 0100-0107

10

15
16
17
18
19
20
21
22

10 CS1
08 CS0
11 RS

13
9 CS2
7
14 E

D7---
D6---
D5---
D4---
D3---
D2---
D1---
D0---

A4---
A3---
A0---

R/W---
CSEX---

NMI---
Φ2---

12

23, 24, 1

Serial In
Not Used

Serial Out

500KHz

6

3, 4

6850
UART

2

5
2

4 5
2

4

MIDI OUTS

220Ω220Ω

220Ω

220Ω
1 2

3 4

5 6

FIGURE 9 - MIDI Interface

MIDI HORN
MIDI Interface

6850 must be initialized by loading
15hex into its Control Register

M
I
C
R
O

B
U
S

L
I
N
E
S

GND
D2
D1
D0
A0
A1
A2
A3
A4
A5
A6
A7
A12
-
-
Φ2
NC

D3
D4
D5
D6
D7

CSEX*
A10
0E*
A11

A9
A8

A13
R/W

+5
INT

RST
NC

GND 5V G0 G2 G4 G6 GND 5V F0 F2 F4 F6 GND

GND 5V G1 G3 G5 G7 GND 5V F1 F3 F5 F7 GND

E6 GND 5V B0 B2 B4 B6 GND 5V A0 A2 A4 A6

E7 GND 5V B1 B3 B5 B7 GND 5V A1 A3 A5 A7

Micro R65F12 MIDI HORN
Header Connections

(pin side)

1 3 5 7 9 11

2 4 6 8 10 12

 - B0/sus0 ped2 ped1 5v GND

- B1/sus1 ---------- MIDI OUTS-------------

1

MIDI HORN PROGRAM
(in Forth Programming Language)

HEX
354 CONSTANT ?ON (note on = 1, note off = 0)
355 CONSTANT PRG (current program number)
356 CONSTANT JKY (last read f keys, front keys)
357 CONSTANT GKY (last read g keys, back keys)
358 CONSTANT BKY (last read b keys, pedal switches)
359 CONSTANT FKEY (f keys currently in effect)
35A CONSTANT GKEY (g keys currently in effect)
35B CONSTANT BKEY (b keys currently in effect)
35C CONSTANT NOTE (calculated key on value)
35D CONSTANT DB (breath difference)
35E CONSTANT VEL (key on key velocity)
35F CONSTANT CHNL (midi channel number)
370 CONSTANT ?CTL (true if a midi control status

 has been sent)
100 CONSTANT N (base address of ADC's)
4 CONSTANT ON_TH (on threshold at 8C8)
3 CONSTANT OFF_TH (off threshold at 8D7)

CV 360 + ; (control voltages 0-7, at 360-367)
CCV 368 + ; (current control voltages, at 368-36F)

DECIMAL
: TABLE <BUILDS 0 DO C, LOOP DOES> + C@ ;

1 6 4 9 2 7 5 10 3 8 6 11 4 9 7 12 16 TABLE NT (note table)
24 60 36 72 48 84 12 96 8 TABLE OCT (octave table)
19 18 4 1 0 17 16 2 8 TABLE CTL (control #s)

HEX

: CWAIT (---| wait for ADC conversion to finish)
BEGIN PA C@ 2 AND UNTIL ;

: CONV (n ---| start converting ADC number n)
N + 0 SWAP C! ;

:STORE (n ---| store ADC number n into CV variables)
CV N C@ 1 RSHIFT SWAP C! ; (toss LSB for 7 bit MIDI value)

2

CODE LSHIFT (x,n --- x'| shift x left by n bits)
TOP LDY, BEGIN, DEY, 0< NOT WHILE, CLC, SEC ROL,
SEC 1+ ROL, REPEAT, POP JMP,

END-CODE

CODE RSHIFT (x,n --- x'| shift x right by n bits)
TOP LDY, BEGIN, DEY, 0< NOT WHILE,
SEC 1+ LSR, SEC ROR, REPEAT, POP JMP,

END-CODE

: MIDINT (---| initialize midi and data ports)
15 118 3 OVER C! C! FF PB C! FF PF C! FF PG C!
0 ?ON C! 0 ?CTL C! ;

: MLD (x ---| wait for transmit clear then send midi x)
BEGIN 118 C@ 2 AND UNTIL 119 C! ;

: M (x1,x2,stat---| send midi staus and 2 data bytes)
CHNL C@ OR MLD MLD MLD ;

: ON 90 M ; (vel,key---| send midi key-on)
: OFF 0 SWAP 80 M ; (key---| send midi key-off)
: PROG CHNL C@ C0 OR MLD MLD ; (p---| send midi

 program change)

: CONT (val,ctl,---| send midi control change)
?CTL C@ (send status byte only once)
IF ELSE CHNL C@ B0 OR MLD THEN
MLD 1 ?CTL C! MLD ;

: FORGET (redefine to allow forgetting colon definitions
 entered with mistakes)

334 @ DUP C@ DF AND SWAP C! FORGET ;

: GLD (---| check for changes in back keys and send
 midi control)

GKY C@ GKEY C@ XOR DUP IF
8 0 DO DUP (xor) 1 I LSHIFT AND

IF 1 I LSHIFT GKY C@ AND
IF 0 54 I + CONT
ELSE 7F 54 I + CONT THEN

THEN
LOOP GKY C@ GKEY C! THEN DROP (xor) ;

3

: BLD (---| check for changes in pedal keys and
 send midi control)

BKY C@ BKEY C@ XOR DUP IF
2 0 DO DUP (xor) 1 I LSHIFT AND

IF 1 I LSHIFT BKY C@ AND
IF 7F 40 I + CONT
ELSE 0 40 I + CONT THEN

THEN
LOOP BKY C@ BKEY C! THEN DROP (xor) ;

: SEND (n---| if it has changed send ADC #n's value
 out midi control)

DUP CV C@ OVER CCV C@ OVER - ABS 2 <
IF DROP DROP (don't do anything if change < 2)
ELSE SWAP 2DUP CCV C! (store it in CCV)

CTL CONT (send midi control change)
THEN ;

: READ (---| read all horn parameters)
0 ?CTL C!
PF C@ FKY C2 = (leave true flag if front keys are new)
0 CONV
PG C@ GKY C! GLD
PB C@ BKY C! BLD
8 0 DO I STORE 0 I 1+ N + C! (conv) I SEND LOOP
IF ELSE PF C@ FKY C! THEN ; (let key bounce settle

 before loading value)

: PROGRAM (---| read bottom front key for program change)
FKY C@ 80 AND
IF ELSE FKY C@ PRG C@ = (note keys are read inverted)

IF ELSE FKY C@ DUP 7F XOR PROG PRG C! THEN
THEN ;

: KEYCALC (---| calculate key-on note value)
FKY C@ FF XOR DUP 78 AND 3 RSHIFT NT
SWAP 7 AND OCT + NOTE C! ;

: BREATH 0 CV C@ ;

: SETVEL (---| calculate key-on velocity from breath)
0 CONV BREATH N C@ 1 RSHIFT MAX 10 + 7F MIN VEL C! ;

4

: KEYON (---| send mid key-on, store key value
 and ?ON flag)

VEL C@ NOTE C@ ON 1 ?ON C! FKY C@ FKEY C! ;

: KEYOFF (---| send midi key-off, store ?ON flag)
NOTE C@ OFF 0 ?ON C! ;

: SETUP (---| set midi chanel at startup)
PF C@ FF XOR 3 RSHIFT F AND CHNL C! ;

: HORN (---| MAIN PROGRAM)
SETUP MIDINT BEGIN
READ PROGRAM BREATH ?ON C@
IF (breath) OFF_TH >

IF FKEY C@ FKY C@ =
IF ELSE KEYOFF KEYCALC BREATH VEL C!

KEYON THEN
ELSE KEYOFF
THEN

ELSE (breath) ON_TH >
IF KEYCALC SETVEL KEYON THEN

THEN ?TERMINAL UNTIL ;

READ HORN VALUES

PROGRAM CHANGE

IS A NOTE ON ?

BREATH > ON THRESHOLD ?

SAME KEY AS LAST ONE ?

BREATH > OFF THRESHOLD ?

SEND MIDI
CONTROL

VALUE

TURN OLD
KEY OFF,

NEW KEY ON
TURN KEY OFF

YES NO

NO NOYES

YES

YES

NO

TURN KEY ON

FIGURE 4 - Program Flow Diagram

OLDER MIDI HORN
Simpler version built with a Yamha Breath
Transducer, one slide pot on the back, and

eight keys on the front

(This is the program for a smaller version of the MIDI Horn built
 with a Yamaha Breath transducer, one slide pot and 8 keys)

HEX
354 CONSTANT ?ON (Is there a note on? no=0, yes=1)
355 CONSTANT PRG (The current Midi program number)
356 CONSTANT DXKEY (The currently on Horn key value)
357 CONSTANT XXKEY (The Midi key value calculated from DXKEY)
358 CONSTANT KYBD (The last read Horn Key value)
359 CONSTANT SLIDER (The last read Horn Slider value)
360 CONSTANT BREATH (The last read Horn Breath value)

: RD PA C! PB C@ ; (Sets up the ports for reading Horn values)

: READ (Reads the Horn values and stores them)
FF RD BREATH C! FE RD SLIDER C! FD RD DXKEY C@ =
IF ELSE 18F 0 DO LOOP (Delay for cancelling between key blips)
FD RD KYBD C! THEN ;

: TERM C4 SCCR C! 33 18 C! ; (Return serial to terminal on exit)

: MIDINIT FF PB C! 0 ?ON C! C0 SCCR C! 1 18 ! ; (Set up Midi port)

: MLD (n --- | Wait till serial chip is ready, then send Midi data n)
BEGIN SCSR C@ 40 AND UNTIL 17 C! ;

DECIMAL

9 CONSTANT ON-THRESH (Thresholds for determining Key On and)

6 CONSTANT OFF-THRESH (Key Off from the Horn Breath value)

: TABLE <BUILDS 0 DO C, LOOP DOES> + C@ ;

(Horn key fingering tables)
1 6 4 9 2 7 5 10 3 8 6 11 4 9 7 12 16 TABLE NOTE (top 4 keys)
24 60 36 72 48 84 12 96 8 TABLE OCTAVE (bottom 3 keys)

HEX

: M (d1,d2,chnl, stat --- | Send 1 midi status and 2 midi data bytes)
SWAP F AND OR MLD 7F AND MLD 7F AND MLD ;

: MM (d1, chnl, stat --- | Send 1 midi status and 1 midi data bytes)
SWAP F AND OR MLD 7F AND MLD ;

: ON 90 M ; (vel, key, chnl --- | Send Midi Note On)
: OFF 80 M ; (vel, key, chnl --- | Send Midi Note Off)
: KPRES A0 M ; (vel, key, chnl --- | Send Midi Poly Key Press)
: CONT B0 M ; (val, ctl, chnl --- | Send Midi Control)
: PWHL E0 M ; (msb, lsb, chnl --- | Send Midi Pitchwheel)
: PROG C0 MM ; (prog, chnl --- | Send Midi Program Change)
: CPRES DO MM ; (val, chnl --- | Send Midi Channel Pressure)

: KEYCALC (Calculate Midi key value from tables and KYBD)
KYBD C@ DUP 78 AND S->D 8 U/ NOTE
SWAP DROP SWAP 7 AND OCTAVE + XXKEY C! ;

: PROGRAM (If back horn key is down, change midi prog)
KYBD C@ 80 AND IF KYBD C@ PRG C@ = IF ELSE
KYBD C@ DUP 0 PROG PRG C! THEN THEN ;

: KEYON (Send midi key on, key vel from slider)
SLIDER C@ XXKEY C@ 0 ON KYBD C@ DXKEY C! 1 ?ON C! ;

: KEYOFF (Send midi key off)
0 XXKEY C@ 0 OFF 0 ?ON C! ;

: CONTROL (Send midi control change, Breath control used)
BREATH C@ 2 0 CONT ;

: HORN (Main Program Loop, exit by keying terminal)
MIDINIT BEGIN READ PROGRAM ?ON C@
IF BREATH C@ OFF-THRESH >
 IF DXKEY C@ KYBD C@ =
 IF CONTROL ELSE KEYOFF KEYCALC KEYON THEN

 ELSE KEYOFF
 THEN
ELSE BREATH C@ ON-THRESH > IF KEYCALC KEYON THEN
THEN ?TERMINAL UNTIL TERM ;

(Two Test Programs)

: SCALE MIDINIT BEGIN 60 10 DO 40 I 0 ON 4FF 0 DO LOOP
0 I 0 OFF ?TERMINAL IF LEAVE THEN LOOP ?TERMINAL UNTIL TERM ;`

: HORN. CR BEGIN READ SLIDER C@ . BREATH C@ . KYBD C@ .
D EMIT ?TERMINAL UNTIL ;

	The Article
	The Circuit
	The Software
	Older Design

