
LyraT & A1S Effects Software

John Talbert - January 2023

1

Table of Contents

Acknowledgements...3

ES8388 Codec Effects Software...3

The LyraT..4

LyraT Controllers ..4

Touch Switches...6

Touch Code ...8

Controller Event Handlers..12

LyraT gainDoubler Effect ...14

Effects Programming Hints..14

LyraT Hardware Hacks...16

Chorus Effect ..18

A1S ESP32 Audio Kit ...24

Pin/Labels..25

A1S Hardware Hacks..26

Programming the Audio Kit ...29

Programming Summary ..29

2

Acknowledgements
Many thanks to Hasan Murod who created the original software package upon which
this project is based. It was written for the Blackstomp Effect Pedal project (https:/
/www.deeptronic.com/blackstomp/) which is a quick development platform for an
ESP32 based audio effects module. The original software package can be found at
https://github.com/hamuro80/blackstomp

Thanks also to Arif Darmawan for his ES8388Arduino software at https://github.com/
vanbwodonk/es8388arduino. This is probably the absolute minimum software needed
to get the ES8388 codec working on an ESP32. This coding project started from this
simple working package. Elements from the Blackstomp software were incrementally
added until I had a full, though scaled back, working version of Blackstomp.

ES8388 Codec Effects Software

What is offered here is a complete Effects Programming Software package for the
LyraT and A1S audio development boards. It is basically the same software package
found on my https://www.jtalbert.xyz/ESP32/ website with only a few changes specific
to each board. Please read the tutorial PDF "Codec Software" for a complete
description of the codec effects software package.

The code was written on the PlatformIO IDE with an Arduino Framework, all from
Visual Studio Code (VSC) as shown in the platformio.ini file:

; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html

[env:esp32dev]
platform = espressif32@5.2.0
board = esp32dev
framework = arduino

monitor_speed = 115200

3

https://www.deeptronic.com/blackstomp/
https://www.deeptronic.com/blackstomp/
https://github.com/hamuro80/blackstomp
https://github.com/vanbwodonk/es8388arduino
https://github.com/vanbwodonk/es8388arduino
https://www.jtalbert.xyz/ESP32/

Both the LyraT and A1S boards use an ES8388 Codec. The same codec was used in
the original package, so there are no changes needed to the codec files -- codec.h,
codec.cpp, set_codec.h, and set_codec.cpp. There are also no changes to the Digital
Signal Processing tools -- bsdsp.h, bsdsp.cpp, and dsptable.h. The remaining files
have minor changes which are explained in detail and in programming sequence in the
next several sections.

The LyraT
The ESP32-LyraT V4.3 is an audio development board produced by Espressif built
around ESP32. It is intended for audio applications, by providing hardware for audio
processing and additional RAM on top of what is already onboard the ESP32 chip. The
specific hardware includes:

ESP32-WROVER-E Processor Module
ES8388 Audio Codec Chip
Dual Microphones on board
Headphone output
2 x 3-watt Speaker output
Dual Auxiliary Input
MicroSD Card slot (1 line or 4 lines)
Six buttons (2 physical buttons and 4 touch buttons)
JTAG header
Integrated USB-UART Bridge Chip
Li-ion Battery-Charge Management

https://www.espressif.com/en/products/devkits/esp32-lyrat

LyraT Controllers

The LyraT board has six mounted switches available as user controllers. Two of them,
Rec and Mode, are momentary pushbuttons. Four are capacitive touch switches -- Set,
Play, Volume+, Volume-. There are also three sensors that detect inserts to the
Headphone Jack, Aux Input Jack, and the SD micro Card Reader. One Green LED is
available on board.

The file set_settings.h assigns ESP32 pins and Labels for each of the above controllers

4

https://www.espressif.com/en/products/devkits/esp32-lyrat

and sensors as well as Codec pin assignments for the I2S and I2C interfaces.

//ESP32 LyraT PIN ASSIGNMENTS
 //~~~~~~~~~~~~~~~~~~~~~~~~~~~

 // DIP Switch Settings for MicroSD 4-wire Mode:
 // 1-2 ON, 3-7 OFF
 // TOUCH_VOL_M not available unless 2 -> OFF
 // AUX_INSERT not available unless 7 -> ON

 #define POT2 39 //possible wired hack ?
 #define POT1 36 //possible wired hack ?

 #define LED_GRN 22
 #define PA_ENABLE 21

 #define KEY_REC 36 //pushbutton, or Pot Hack?
 #define KEY_MODE 39 //pushbutton, or Pot Hack?
 #define TOUCH_SET 32 //TOUCH9
 #define TOUCH_PLAY 33 //TOUCH8
 #define TOUCH_VOL_M 13 //TOUCH4, when DIP SWTCH 2&4 OFF
 #define TOUCH_VOL_P 27 //TOUCH7

 #define TOUCH_THRESHOLD 30

 #define PA_ENABLE 21 //PA Enable Output
 #define HDPHN_INSERT 19 //Headphone jack insert detect in
 #define SD_INSERT 34 //MicroSD insert detect in
 #define AUX_INSERT 12 //when DIP Swtch 5off, 7on
 //keep DIP Switch 7off when powering on
 //or unplug AUX input jack

//pins NOT available for OLED Display or other I2C device
#define SCK_PIN 22 //Green LED out
#define SDA_PIN 21 //PA Enable out

//ESP32-Codec Codec PIN SETUP
#define I2S_NUM (0)
#define IS2_MCLK_PIN (0)
#define I2S_BCLK (5)
#define I2S_LRC (25)
#define I2S_DIN (35)
#define I2S_DOUT (26)

#define Codec_SDA 18 //SDA
#define Codec_SCK 23 //SCL
#define Codec_ADDR 0x10

 // SD Card Reader SPI
 #define SD_CARD_D0 02
 #define SD_CARD_D1 04
 #define SD_CARD_D2 12
 #define SD_CARD_D3 13
 #define SD_CARD_CMD 15
 #define SD_CARD_CLK 14

5

Note that several of the controller pins are shared with other board functions such as
the JTAG output header and the micro SD Card Reader. Eight onboard DIP Switches
are set by the user to configure the pin functions as explained in some of the above file
comments and as shown here in a circuit diagram:

There are no extra ESP32 pins available on the LyraT board for other uses such as
potentiometers or more LED indicators. The usefulness of some pin functions are
questionable and might be co-opted, such as the Headphone and Aux Insert indicator
pins, but changes to the micro circuitry of the board would be difficult. Later I will
suggest an easier circuit hack which replaces the two pushbuttons with potentiometers.

Touch Switches

Many ESP32 pins can act as Capacitive Touch Switches. Here, pins IO32, IO33, IO27
and IO13 have been assigned to capacitive touch switches on the LyraT board. Touch
pins do not act as digital outputs. They put out an analog type value that changes with
the proximity of your finger to the touch pad. When touched the four LyraT touch switch
values hover around 15 to 21, and when not touched the value is 45 to 67.

The Arduino function digitalRead() can't be used for Touch Pads. Instead you use

6

touchRead(pin) from the ESP32 code library. The following code for main.cpp can be
used to monitor the values from all the LyraT sensors including the four Touch Sensors.

#include <Arduino.h>
#include "set_settings.h"

//~~~
//~~~~~~~~~~~~~~~SETUP~~~~~~~~~~~~~~~~~~~~~~~~~
//~~~

void setup()
{
 Serial.begin(115200);
 delay(3000);

// initialize Switches, some with pullup resistor
pinMode(KEY_REC, INPUT);
pinMode(KEY_MODE, INPUT);
pinMode(TOUCH_SET, INPUT);
pinMode(TOUCH_PLAY, INPUT);
pinMode(TOUCH_VOL_M, INPUT);
pinMode(TOUCH_VOL_P, INPUT);

pinMode(HDPHN_INSERT, INPUT);
pinMode(SD_INSERT, INPUT);
pinMode(AUX_INSERT, INPUT_PULLUP);

pinMode(LED_GRN, OUTPUT);

delay(2000);

} //Setup End

//~~~
//~~~~~~~~~~~~~~~MAIN LOOP~~~~~~~~~~~~~~~~~~~~~
//~~~

void loop()
{
 //Test of LyraT Switches

 digitalWrite(LED_GRN, HIGH);
 delay(300);
 digitalWrite(LED_GRN, LOW);
 delay(400);

 Serial.print(digitalRead(KEY_REC));
 // Serial.print(analogRead(POT1));
 Serial.print(" ");
 Serial.print(digitalRead(KEY_MODE));
 // Serial.print(analogRead(POT2));
 Serial.print(" ");

 //Print Raw Touch Switch values to determine threshold
 Serial.print(touchRead(TOUCH_PLAY));

7

 Serial.print(" ");
 Serial.print(touchRead(TOUCH_SET));
 Serial.print(" ");
 Serial.print(touchRead(TOUCH_VOL_M));
 Serial.print(" ");
 Serial.print(touchRead(TOUCH_VOL_P));

 Serial.print(" ");
 Serial.print(digitalRead(HDPHN_INSERT));
 Serial.print(" ");
 Serial.print(digitalRead(AUX_INSERT));
 Serial.print(" ");
 Serial.println(digitalRead(SD_INSERT));

} // End of Main Loop

Ideally, we would like the Touch Pads to act like digital pushbuttons. This can be
accomplished by comparing the touchRead() readings with a fixed threshold value.
This threshold value must lie someplace between the "touched" and "un-touched" results
from the above touchRead() readings. Then the following simple code can transform
the readings to a digital one or zero.

if(touchRead(pin) <= TOUCH_THRESHOLD)
{ touch_digital_value = 0; }

else { touch_digital_value = 1; }

The threshold chosen was 30, stored in the constant, TOUCH_THRESHOLD, in the
file set_settings.h.

Touch Code

The original codec effects package had no provisions for dealing with Touch Sensors
so it has to be added. First, a boolean "touch" property is added to the BUTTON
struct, along with a String name to facilitate button recognition in the SytemMonitor.
Within the controllerModule class, in the file controller_mod.h, a six element
BUTTON array was created to accommodate all six button sensors on the LyraT
board.

struct BUTTON
{
 BUTTON_MODE mode;
 String name;
 bool inverted;
 bool touch;
 int min;
 int max;

8

 int value;
 int pin;
};

~~~~~~~~~~~~~~~~~~~~~~~~
  CONTROL control[6];
  BUTTON button[6];

The Constructor method defined in the file controller_mod.cpp initializes all 6 
button elements, setting the touch property to false and the mode to BM_DISABLED.

for(int i=0;i<6;i++)
   {
    button[i].inverted = false;
    button[i].touch = false;
    button[i].value = 0;
    button[i].min = 0;
    button[i].max = 1;
    button[i].mode = BM_DISABLED;
   }

The button properties can then be reconfigured as needed by the user in the init( ) 
method within the file set_module.cpp.

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void controller_module::init()  //effect module class initialization
 {
  name = "LYRAT";
  inputMode = IM_LR;   // IM_LR or IM_LMIC

  // Set up pin Modes for the switches and LEDs
  // Some need a pullup resistor.
  // Most have hardware pullup resistors. 

  pinMode(KEY_REC, INPUT); 
  pinMode(KEY_MODE, INPUT);
  pinMode(TOUCH_SET, INPUT);
  pinMode(TOUCH_PLAY, INPUT);
  pinMode(TOUCH_VOL_M, INPUT);
  pinMode(TOUCH_VOL_P, INPUT);

  pinMode(HDPHN_INSERT, INPUT);
  pinMode(SD_INSERT, INPUT);
  pinMode(AUX_INSERT, INPUT_PULLUP);

  pinMode(LED_GRN, OUTPUT);

 
  //setting up the buttons
  
  button[0].name = "Rec";
  button[0].mode = BM_MOMENTARY;
  button[0].touch = false;
  button[0].pin = KEY_REC;

  button[1].name = "Mode";
  button[1].mode = BM_MOMENTARY;

9



  button[1].touch = false;
  button[1].pin = KEY_MODE;
  
  button[2].name = "Play";
  button[2].mode = BM_TOGGLE;
  button[2].touch = true;
  button[2].pin = TOUCH_PLAY;
  
  button[3].name = "Set";
  button[3].mode = BM_TOGGLE;
  button[3].touch = true;
  button[3].pin = TOUCH_SET;
  
  button[4].name = "Vol-";
  button[4].mode = BM_TOGGLE;
  button[4].touch = true;
  button[4].pin = TOUCH_VOL_M;
  
  button[5].name = "Vol+";
  button[5].mode = BM_TOGGLE;
  button[5].touch = true;
  button[5].pin = TOUCH_VOL_P;
  
  // Only Button Control, No Pots

These properties for each of the six LyraT buttons are then passed to the buttontask( ) 
within task.cpp.  This task continuously polls the button pin values and manipulates 
those values to create a MOMENTARY or TOGGLE type switch action (specified in 
the button[ ].mode) from the polled values.

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//~~~~~~~~~~~~~~~BUTTON CONTROL TASK~~~~~~~~~~~
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void buttontask(void* arg)
{  
  //state variables
  int bstate[6];
  int bstatecounter[6];
  

  for(int i=0;i<6;i++) 
  {
    bstate[i]=0;
    bstatecounter[i] = 0;
  }

  while(true)
  {
    vTaskDelay(1);

    for(int i=0;i<6;i++)  //service each of 6 possible switches
    {
      
      if(myPedal->button[i].mode == BM_TOGGLE)
      { 
        int temp = 0;
        if(myPedal->button[i].touch){

10



            if(touchRead(myPedal->button[i].pin) >= TOUCH_THRESHOLD)
                 { temp = 0; }
            else { temp = 1; }
        }
        else {
              temp = !digitalRead(myPedal->button[i].pin);
        }

        if(myPedal->button[i].inverted)
        temp = !temp;
        
        if(temp!= bstate[i])
        {
          bstatecounter[i]++;
          if(bstatecounter[i]>9) //debouncing
          {
            bstate[i] = temp;
            bstatecounter[i]=0;
            if(temp)
            {
              myPedal->onButtonPress(i);
              if(myPedal->button[i].value == 1)
                myPedal->button[i].value = 0;
              else
                myPedal->button[i].value = 1;
                
              myPedal->onButtonChange(i);
            }
            else
            {
              myPedal->onButtonRelease(i);
            }
          }
        }
        else bstatecounter[i]=0;
      }
      else if(myPedal->button[i].mode == BM_MOMENTARY)
      {
        int temp = 0;
        if(myPedal->button[i].touch){
            if(touchRead(myPedal->button[i].pin) >= TOUCH_THRESHOLD)
                 { temp = 0; }
            else { temp = 1; }
        }
        else {
              temp = !digitalRead(myPedal->button[i].pin);
        }
        if(myPedal->button[i].inverted)
        temp = !temp;
        
        if(temp != myPedal->button[i].value)
        {
          bstatecounter[i]++;
          if(bstatecounter[i]>9) //debouncing
          {
            bstatecounter[i]=0;
            if(temp==0)
            {
              myPedal->onButtonRelease(i);
              myPedal->button[i].value = 0;

11



              myPedal->onButtonChange(i);
            }
            else //temp=1
            {
             myPedal->onButtonPress(i);
              myPedal->button[i].value = 1;
              myPedal->onButtonChange(i);
            }
          }
        }
        else //temp = myPedal->button[i].value
        {
          bstatecounter[i]=0;
        }
      }

    }
  }
} //End Button task

Notice in the above code that if the button is designated as a "touch" sensor, a 
touchRead( ) is executed and the reading is compared with the threshold value to 
convert it to a digital high or low. If not, the regular digitalRead( ) function is used 
instead.  The final button values are then updated and the controller method 
onButtonChange( ) is called if the button value changed.  This task is continually 
repeated within an infinite while(1) loop.

Controller Event Handlers

The specific effect illustrated in this package is simple amplitude control of an audio 
input signal using the LyraT button controllers. The programmer will define an "event 
handler" in the file set_module.cpp for each of the 6 LyraT button sensors in the form 
of the controller class method onButtonchange( ).  

void controller_module::onButtonChange(int buttonIndex)
{
  switch(buttonIndex)
  {
    case 3: //"Set" button state has changed
    {
      if(button[3].value) //if effect is activated
      {
        //codec.analogBypass(false);
        codec.DACmute(0);
        //digitalWrite(LED_GRN, HIGH);
      }
      else //if effect is bypassed
      {
        //codec.analogBypass(true); 
        codec.DACmute(1);
        //digitalWrite(LED_GRN, LOW);

12



      }
      break;
    }
    
    case 2: // "Play" button[2] state has changed
    {
      if(button[2].value) // just test LED and Switch
      {digitalWrite(LED_GRN, HIGH);}
      else 
      {digitalWrite(LED_GRN, LOW);}
      break;
    }

    case 4: // "Vol-" button[4] state has changed
    {
      gain = gain - 0.2;
      if(gain < 0) {gain=0;}
      break;
    }

    case 5: // "Vol+" button[5] state has changed
    {
      gain = gain + 0.2;
      if(gain > 1) {gain=1;}
      break;
    }

    case 0: // "Rec" button[0] state has changed
    {
      if(button[0].value) 
      {gainRange = 2;} //boost volume
      else 
      {gainRange = 1;}
      break;
    }
  }
}

Here is an explanation of what the code above accomplishes for each button:

1. Rec This is a momentary action pushbutton.  If pressed the 
audio signal is boosted by 2, using the int variable gainRange.

2. Mode This is a momentary action pushbutton. No action is 
defined, but it will show up in the system monitor along with all the
others.

3. Play This is a toggle action touch pad.  It will toggle the 
green LED off and on.

4. Set This is a toggle action touch pad.  It toggle the codec 
audio mute.

13



5.  Volume - This is a toggle action touch pad.  It will decrease the 
audio signal volume by 1/5 each time pressed until zero is reached, 
using the float variable "gain".

6. Volume + This is a toggle action touch pad.  It will increase the 
audio signal volume by 1/5 each time pressed until one is reached, 
using the float variable "gain".

LyraT gainDoubler Effect

Finally, the effect processing code is found in the loop( ) of the main.cpp file.

 while(1){   //signal processing loop
      setDebugVars(myPedal->gain, myPedal->gainRange, 0, 0);

//gather some input samples into rxbuf from the ADC DMA memory,
  i2s_read(I2S_NUM_0, rxbuf, FRAMELENGTH*2, &readsize, 20);
  
//process samples one at a time from buffers
for (int i=0; i<(FRAMELENGTH); i+=2) 
{   
    rxl = (float) (rxbuf[i]) ;   //convert sample to float
    rxr = (float) (rxbuf[i+1]) ; 

    txl = myPedal->gain * myPedal->gainRange * rxl;  
    txr = myPedal->gain * myPedal->gainRange * rxr;

    txbuf[i]   = ((int16_t) txl) ; //convert sample back to integer
    txbuf[i+1] = ((int16_t) txr) ;
 }

// play processed txbuf by loading transmit buffer into DAC DMA memory
  i2s_write(I2S_NUM_0, txbuf, FRAMELENGTH*2, &readsize, 20);

The actual signal processing happens in the two middle code lines. The left and right 
channel audio samples are multiplied by two variables, gain and gainRange, which 
were manipulated by 2 touch pads and one pushbutton in the event handlers defined 
above.

Effects Programming Hints

When loading your programs onto the LyraT board both the Boot and RST buttons 
must be used in a specific sequence. As soon as you see "Connecting ......."  hold down

14



the Boot button and then press and release the RST button. Then release Boot. The 
program will load but the Monitor won't engage until you Reset with the RST button 
once again.
 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

One very useful programming tool in this software package is the SystemMonitor
Task. It can be started up from setup() in main.cpp with this command:

runSystemMonitor();

Along with CPU data, it will print out all current Controller values, updating around
once per second. A sample of the Monitor output is shown below:

running ticks: 36453
CPU Usage: nan %
BUTTON-0 Rec: 0
BUTTON-1 Mode: 0
BUTTON-2 Play: 1
BUTTON-3 Set: 1
BUTTON-4 Vol-: 1
BUTTON-5 Vol+: 1
Debug String: None
Debug Variables: 0.4, 1, 0, 0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Note the "Debug Variables" line.  This is enabled with the command setDebugVars( ). 
It will display the current value of any four program variables you care to select. Here 
it was placed within the signal processing while(1) loop to provide the programmer 
with a current check of the gain and gainRange variables.

setDebugVars(myPedal->gain, myPedal->gainRange, 0, 0);

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

One other change to the function sysmon_task() in the file task.cpp was needed to
take advantage of the added "name" property in the BUTTON struct.

if(myPedal->button[i].mode != 0) // not CM_DISABLED
Serial.printf("BUTTON-%d %s: %d\n", i,

myPedal->button[i].name.c_str(), myPedal->button[i].value);

15

LyraT Hardware Hacks

Unfortunately, there are no ESP32 pins left available on the LyraT board for adding
potentiometers, LEDs, or other Sensors. Some board features will need to be removed
to free up pins for other uses.

The HDPHN_INSERT and AUX_INSERT pin functions are of questionable
usefulness but disconnecting their tiny traces on the circuit board would be difficult.

Four ESP32 pins on the JTAG header are readily accessible by setting the DIP
switches. However, these pins are also used by the SD Card Reader. There is no
circuitry inside the actual SD Slot, instead, it is inside the SD Card itself. That means
that the four JTAG pins are free to be wired to other circuits as long as no SD Card is
inserted in the SD Slot. To use the SD Card Reader, then, one would first have to
disconnect any external circuits to those JTAG header pins, which may be as simple as
pulling the JTAG header connection. It is useful here to note that GND and 3.3volts
are readily available on the header next to the JTAG.

The solution chosen here was to take over the two pushbuttons Rec and Mode as
shown in the figure below and leave the SD Card Reader always available.

16

17

These two wired potentiometers can now be used simultaneously with the SD Card
Reader functions, unlike the JTAG pin solution discussed above. The two
pushbuttons, Rec and Mode, have large metallic feet which provide a easy soldering
site for connecting wires to our pots (be careful to limit the soldering time to 2 seconds
or less). In addition, the pushbutton feature is still available if the pot wiper is
positioned at least half way, leaving the user a choice between analog or digital
controllers at GPIO pins 36 and 39.

The 1k series resistor is required to guard against a short circuit between 3.3volts and
Ground when the pot wiper is turned all the way up and the user presses the
pushbutton, which connects the pot wiper to Ground or zero volts. The supply voltage
3.3volts was taken from the far left pin of the 4 pin header next to the JTAG header.

Chorus Effect

Much more interesting effects can be created using the DSP tool files and it only
involves writing code for the while(1) loop in main.cpp and setting up the controllers
in the two set_module files. All the other files in the effect software package can be
left as is including most of the changes described above.

Here is the 16-bit Stereo Chorus processing code to be placed in the loop() of
main.ccp

while(1)
{

setDebugVars(myPedal->depth, myPedal->freq,
 myPedal->stereo, myPedal->asynch);

 i2s_read(I2S_NUM_0, rxbuf, FRAMELENGTH*2, &readsize, 20);

 for (int i=0; i<(FRAMELENGTH); i+=2)
 {
 rxl = (float) (rxbuf[i]) ; //convert sample to float
 rxr = (float) (rxbuf[i+1]) ;

 //~~~
 //~~~~~~~~~stereoChorus Processing~~~~~~~~~~~~~
 //~~~
 delay1.write(rxl);
 delay2.write(rxr); //write anyway, no matter it's stereo or mono input

 lfo1.update();
 lfo2.update();
 float dt1 = (1 + lfo1.getOutput())* myPedal->depth;
 float dt2;
 if(myPedal->asynch == 0) //asynchronous
 dt2 = (1 + lfo2.getOutput())* myPedal->depth;

18

 else //synchronous
 dt2 = (1 + lfo1.getOutput(myPedal->phaseDiff))* myPedal->depth;

 txl = (0.7 * rxl) + (0.7 * delay1.read(dt1));
 if(myPedal->stereo) //if stereo input
 txr = (0.7 * rxr) + (0.7 * delay2.read(dt2));
 else //if mono
 txr = (0.7 * rxl) + (0.7 * delay1.read(dt2));

 //~~~
 //~~~

 txbuf[i] = ((int16_t) txl) ; //convert sample back to integer
 txbuf[i+1] = ((int16_t) txr) ;
 }

 i2s_write(I2S_NUM_0, txbuf, FRAMELENGTH*2, &readsize, 20);

}

A general description of the stereoChorus Effect code is given here:

The code first loads the input signal samples into two circular delay buffers. The
indices, dt1 and dt2, into each of these delay buffers determines the amount of delay.
The two low frequency oscillator outputs multiplied by the depth control are applied
to the two delay buffer indices. This results in an oscillating amount of delay in the two
delay lines, one oscillating a bit faster than the other. Finally, the output samples are
generated as an equal mix of the original signal samples and the delayed samples, the
left channel given a different delay from the right.

One if/else section sets up a stereo or mono output depending on the boolean value
"stereo". Another if/else section sets up a different dt2 delay index calculation
depending on the boolean value "asynch".

The effect controllers are set up in the set_module.h and set_module.cpp files. First,
here is the set_module.h:

#ifndef MODULE_H_
#define MODULE_H_

#include "controller_mod.h"
#include "bsdsp.h"

//~~~
//~~~~ DSP Class Declarations (bsdsp files) ~~~
//~~~

 extern fractionalDelay delay1;
 extern fractionalDelay delay2;
 extern oscillator lfo1;
 extern oscillator lfo2;

//Create a child class derived from controllerModule

19

//controller_module sets all Pot, Switch, and LED pin, mode, and actions

class controller_module:public controllerModule
{
 public:
 float depth;
 float freq;
 float beatFrequency;
 float phaseDiff;
 bool asynch;
 bool stereo;

 void init();
 void onButtonChange(int buttonIndex);
 void onControlChange(int controlIndex);
};

//controller_module myPedal declaration with extern
extern controller_module *myPedal ;

#endif

Note the #include "bsdsp.h line. Two instances of the DSP fractionalDelay Class
and two instances of the DSP oscillator Class are declared -- delay1, delay2, lfo1,
lfo2. Four controller variables are declared for depth, freq, beatFrequency, and
phaseDiff. Two boolean switch variables are declared for asynch and stereo. As you
can see, just this short header file lists all the basic controller components of the
effect.

Next is the set_module.cpp file where all the elements declared above are defined in
detail, mostly inside the init() method. Here we'll use the two pots wired as de-
scribed in the circuit hack section above.

#include "set_module.h"
#include "set_settings.h"
#include "set_codec.h"

//controller_module myPedal definition
controller_module *myPedal = new controller_module();

//~~~
//~~~~ DSP Class Definitions (bsdsp files) ~~~
//~~~

 fractionalDelay delay1;
 fractionalDelay delay2;
 bool x = delay1.init(3); //init for 3 ms delay
 bool y = delay2.init(3); //init for 3 ms delay
 oscillator lfo1;
 oscillator lfo2;

//~~
//~ CONTROLLER MODULE CLASS METHOD DEFINITIONS ~

20

//~~

void controller_module::init() //effect module class initialization
 {
 name = "Stereo Chorus";
 inputMode = IM_LR; // IM_LR or IM_LMIC

 // Set up pin Modes for the switches and LEDs
 pinMode(LED_GRN, OUTPUT);
 pinMode(TOUCH_SET, INPUT);
 pinMode(TOUCH_PLAY, INPUT);
 pinMode(TOUCH_VOL_M, INPUT);
 pinMode(TOUCH_VOL_P, INPUT);

 //setting up the 2 pots
 control[0].name = "Rate";
 control[0].mode = CM_POT;
 control[0].levelCount = 128;
 control[0].pin = POT1;

 control[1].name = "Depth";
 control[1].mode = CM_POT;
 control[1].levelCount = 128;
 control[1].pin = POT2;

 //setting up the 4 touch switches
 button[2].name = "F/P Diff";
 button[2].mode = BM_TOGGLE;
 button[2].touch = true;
 button[2].pin = TOUCH_PLAY;

 button[3].name = "Stereo";
 button[3].mode = BM_TOGGLE;
 button[3].touch = true;
 button[3].pin = TOUCH_SET;

 button[4].name = "Sync";
 button[4].mode = BM_TOGGLE;
 button[4].touch = true;
 button[4].pin = TOUCH_VOL_M;

 button[5].name = "Bypass";
 button[5].mode = BM_TOGGLE;
 button[5].touch = true;
 button[5].pin = TOUCH_VOL_P;

 //set initial values for the chorus variables
 freq=5;
 depth=0.5;
 beatFrequency=2.5;
 stereo = 1;
 asynch = 1;
 lfo1.setFrequency(freq);
 lfo2.setFrequency(freq+beatFrequency);
 }
//~~~
void controller_module::onButtonChange(int buttonIndex)
{
 switch(buttonIndex)

21

 {
 case 5: // button[5] Bypass state has changed
 {
 if(button[5].value) //if effect is activated
 {
 codec.analogBypass(false);
 //codec.DACmute(0);
 digitalWrite(LED_GRN, HIGH);
 }
 else //if effect is bypassed
 {
 codec.analogBypass(true);
 //codec.DACmute(1);
 digitalWrite(LED_GRN, LOW);
 }
 break;
 }
 case 4: //the button[4] Sync state has changed
 {
 asynch = (bool)button[4].value;
 break;
 }
 case 3: //the button[3] Stereo state has changed
 {
 stereo = (bool)button[3].value;
 break;
 }
 case 2: //the button[2] FP/Diff state has changed
 {
 beatFrequency = 5 * (float)button[2].value;
 phaseDiff = (float)button[2].value * 127;
 lfo2.setFrequency(freq + beatFrequency);
 break;
 }
 }
}
//~~~
void controller_module::onControlChange(int controlIndex)
{
 switch(controlIndex)
 {
 case 0: //rate
 {
 freq = 0.5 + 10 * (float)control[0].value/127.0;
 lfo1.setFrequency(freq);
 lfo2.setFrequency(freq + beatFrequency);
 break;
 }
 case 1: //depth
 {
 depth = 1.49 * (float)control[1].value/127.0;
 break;
 }
 }
}

The first thing accomplished in the set_module.cpp file is the creation of instances for
all the Classes used in the Effect. A pointer to myPedal is created, the main instance

22

object of the controller_module() child class. delay1 and delay2 are instance objects
of the fractionalDelay DSP class. lfo1 and lfo2 (low frequency oscillators) are
instance objects of the oscillator DSP class. Both delay instances are initialized with
delay1.init(3) and delay2.init(3). This will create buffers that hold 3 milliseconds of
samples given the defined SAMPLE_RATE. The number of samples in buffer =
(samples per second) * (0.003 seconds)). These init() methods return boolean true if
the buffer build was successful.

Next, the controller child init() method is defined, to be executed later in the main
loop of main.cpp with the line myPedal->init(). Here pinModes are set up for 4
switches and one LED. Then the control properties required for 4 switches and 2 pots
are configured. Finally, all the new variables used to hold the pot and switch values
are defined and given initial values. At this point we can also assign some of these
variables to the inputs of some DSP methods. The setFrequency() method of the lfo1
oscillator class object will get its frequency from the variable freq. The other low
frequency oscillator, lfo2, will get a slightly higher frequency, freq+beatFrequency.

One pushbutton is set up in the controller method onButtonChange() to either enable
the Chorus Effect or bypass it and indicate which with an LED. The other switches
change the Effect.

The action of 2 pots are configured in the controller method onControlChange().
One pot value is assigned to the variable depth after a bit of mathematical adjustments.
It will be used later in the signal processing loop. The other pot value is used right
away to set the frequency of the low frequency oscillator objects using the oscillator
class setFrequency() method.

23

A1S ESP32 Audio Kit

The ESP Audio Kit board is an audio development board with the same features as the
LyraT.

ESP32-WROVER-E Processor Module
ES8388 Audio Codec Chip
Dual Microphones on board
Headphone output
2 x 3-watt Speaker output
Stereo Auxiliary Input
MicroSD Card slot (1 line or 4 lines)
Six pushbuttons
JTAG header
Integrated USB-UART Bridge Chip
Li-ion Battery-Charge Management
Built-in 520 KB SRAM, 448 KB ROM, 16KB RTC SRAM, 4MB SPI Flash

The main difference lies in its use of the A1S Processor by AI Thinker. This is an
ESP32 processor with an integrated codec. Earlier versions used the AC101 codec and
later versions (v2.2 and above) used the ES8388 codec. https://docs.ai-thinker.com/
_media/esp32-a1s_v2.3_specification.pdf

24

https://docs.ai-thinker.com/_media/esp32-a1s_v2.3_specification.pdf
https://docs.ai-thinker.com/_media/esp32-a1s_v2.3_specification.pdf

Pin/Labels

The following diagram shows the A1S pin assignments, which can be used to generate
a list of pin Labels for the file set_settings.h

Include these pin labels in the set_settings.h file:

 //A1S ESP32 Audio Kit PIN ASSIGNMENTS
 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 #define POT2 39 //possible wired hack ?
 #define POT1 36 //possible wired hack ?

 #define LED1 22 //Low On
 #define LED2 19 //shared with Key3

 #define KEY1 36 //pushbutton, Pot Hack?
 #define KEY2 13 //pushbutton, shared with SD Data
 #define KEY3 19 //pushbutton, shared with LED2
 #define KEY4 23 //pushbutton
 #define KEY5 18 //pushbutton

25

 #define KEY6 05 //pushbutton

 #define PA_ENABLE 21 //Mute Audio Output Amps
 #define HDPHN_INSERT 39 //Headphone jack insert detect, Pot Hack
 #define SD_INSERT 34 //MicroSD insert detect in

 //pins NOT available for OLED Display or other I2C device
 #define SCK_PIN 22 // LED1 out
 #define SDA_PIN 21 // PA Mute

 //ESP32-Codec Codec PIN SETUP
#define I2S_NUM (0)
#define IS2_MCLK_PIN (0)
#define I2S_BCLK (5)
#define I2S_LRC (25)
#define I2S_DIN (35)
#define I2S_DOUT (26)

 //ESP32-Codec I2C PIN SETUP
 #define Codec_SDA 33 //SDA
 #define Codec_SCK 32 //SCL
 #define Codec_ADDR 0x10

 //DATA3 and CMD on-board switches in the ON position
 // SD Card Reader SPI
 #define SD_CARD_CS 13
 #define SD_CARD_MISO 2
 #define SD_CARD_MOSI 15
 #define SD_CARD_CLK 14

 //SPI.begin(PIN_AUDIO_KIT_SD_CARD_CLK, PIN_AUDIO_KIT_SD_CARD_MISO,
 // PIN_AUDIO_KIT_SD_CARD_MOSI, PIN_AUDIO_KIT_SD_CARD_CS);

 //when you set up the SD library you need to indicate the
 //PIN_AUDIO_KIT_SD_CARD_CS as CS pin

A1S Hardware Hacks

Unlike the LyraT, the A1S board has no Touch Switches. Instead, it uses six regular
pushbutton switches labeled KEY1 through KEY6, along with Reset and Boot. These
six Pushbuttons are connected to ESP32 pins 36, 13, 19, 23, 18, and 05. Five of them
are available on a 14-pin board header, convenient for wiring up 5 external switches in
parallel with the 5 on-board switches, KEY2 through KEY6. Make sure that any
external pushbuttons are "normally open" like the on-board pushbuttons.

KEY1 is wired to pin 36. This GPIO pin is the only one among the 6 pushbuttons that
has an ADC Input capability along with its Digital Input function. A look at the board's
pushbutton circuit below reveals an interesting resistor divider network made up of
resistors R55 through R59. These resistors along with R60 through R64 are not
installed. If installed, GPIO36, set up as an ADC Input, would receive a different

26

voltage depending on which pushbutton is pressed. All 6 on-board pushbuttons would
then affect the one ADC input. Short-circuit resistors R66 through R70 could then be
removed cutting the connections between KEY2 - KEY6 with their GPIO digital input
pins. These 5 GPIO pins(13, 19, 23, 18, and 05) could then be used for other purposes
such as external switches using the convenient 14-pin header connections.

Unfortunately, like the LyraT, there are no GPIO pins free on the Audio Kit board,
especially with ADC capabilities for use with external potentiometers. There is a 4-pin
JTAG header, but those pins are also used by the SD Card Reader as set by 5-pin DIP
switches. When DIP switches 1, 4, 5 are set to "ON" the JTAG header carries IO15,
IO13, IO12, and IO14. When set to "OFF", the SD Card Reader is connected. Note
that pin IO13 of KEY2 is also shared with the SD Card Reader and JTAG.

The circuit hack below illustrates one way to connect two external potentiometers to
the ESP32 Audio Kit board while keeping the SD Card Reader available.

GPIO36, from onboard KEY1, is co-opted for one of the external pots. Ground and
3.3volts are available from the right end of the 14-pin header. The two KEY1

27

pushbutton leads closest to the board edge are connected to GND. The other two are
your connections to GPIO36. These pushbutton leads are tiny and difficult to solder.
Use thin, single strand, connection wire and only a half second or so of solder
application time. Hot glue on the wire insulation can keep the connection strong. Since
KEY1 is a "normally open" switch, it doesn't have to be removed. However, a 1k

28

series resistor is used to protect against 3.3v being shorted to ground when the
pushbutton is pressed while the pot is dialed up.

The second pot connection is a unique hack. The ESP32-Audio-Kit uses pin IO39 to
detect when headphones are connected to the mounted headphones jack. IO39 is
connected to the sleeve tab of the headphones jack. It is also connected to a 100k pull-
up resistor to 3.3v making it normally high at 3.3v. When a plug is inserted into the
jack the sleeve tab makes a connection with the plug sleeve ground and IO39 will go
low to zero volts.

If IO39 is to be used for a pot controller its Headphone Detect function must be
disabled. This is easily accomplished by simply bending up the Sleeve Tab on the top
of the board's headphone jack so that it will no longer make contact with the sleeve of
an inserted headphone plug. The Sleeve Tab is then a convenient place to solder a wire
going to the pot wiper.

Note that the LyraT board also has a Headphone Detect but it is not wired up in
exactly the same way to the Headphones Jack.

Programming the Audio Kit

Effects programs for the A1S Audio Kit (version 2.2 or later with the ES8388 Codec)
will be almost the same as shown for the LyraT. The only changes needed are the new
pin/label assignments to be placed in the file set_settings.h, as shown above, and
incorporating those new labels into set_module.cpp. Be sure to set the button[]
properties "touch" to "false" since this board does not use touch switches.

Programming Summary

Most of the effects programming will involve just three files in the package.

1. The set_settings.h file holds all the program settings in the form of
constants such as sample rate, bits per sample, number of channels,
DMA memory sizes and, of course, the ESP32 pin assignments for
the physical controllers, LEDs, I2S interface and I2C interface.
This file also sets up the I2S_init() function.

2. The set_module.h and .cpp files hold all the setups for physical

29

controllers such as the button[] and control[] parameters, the
init() method, and the event handler methods. These methods are
also used to control any LEDs and set up any DSP tools and
variables. The set_module files will be a major focus point in
effects programming.

3. Finally, the while(1) infinite loop within main.cpp will hold the
actual effects processing routines down at the audio sample level.

The remaining files in the package will rarely need changes.

1. The codec.h and .cpp files along with set_codec.h and .cpp need to
be changed only with a different codec. In both the LyraT and A1S
Audio Kit boards the codec used was an ES8388. Both use the
exact same codec files. With a different codec these files will need
to be completely changed but that change will likely not affect the
content of the other files in the package.

2. The controller_mod.h and .cpp files will never need changes. Any
needed changes to the Parent Class defined here are designed to
happen only in the "child" class controller_module constructed in
the set_module files.

3. The task.h and .cpp files define task functions for polling the buttons
and controllers along with some system monitor tasks. In the above
LyraT example some simple changes were made to the button
polling task to accommodate Touch sensors and an added String
button[] name for display in the system monitor. Other unique
sensors may require simple program changes to these files, a rotary
encoder for example. In general, though, these files will not need
any changes. They will satisfy most any effects program you
design.

4. Finally, the DSP (Digital Signal Processing) tool files -- bsdsp.h,
bsdsp.cpp, and dsptable.h, can always be expanded with new class
tools, but currently they hold quite a wide variety of tools ripe for
exploration. One useful tool not yet available might be an SD Card
Reader class.

This ESP32 Codec software package was designed to simplify what can be an
intimidating programming task by encapsulating each of many program tasks into
separate program files, each with its own clearly defined job.

30

31

