
LillyGo TAudio Effects Software
With Neopixels and SD Card

John Talbert - January 2023

1

Table of Contents

Codec Effects Software......................................4

The LillyGo TAudio DSP......................................4

TAudio Controller Hardware...............................5

Codec Effects Software Package......................9

NeoPixel LEDs ...10

 Description..10

 NeoPixels on TAudio11

 NeoPixel Library11

 The Set_Settings File12

 The Task File ...14

 The NeoPixel Task15

SD Card Playback with Effects19

SPI Protocol ..19

Libraries for the SD20

2

The SD_PLAY.h File ...23

 WaveFile ...24

 Samples[] ..25

 WaveHeader Struct26

The SD_PLAY.cpp File27

 Setup() in main.cpp31

 Loop() in main.cpp.................................32

 ReadFile() ...34

 FillI2SBuffer() ...35

The Set_Codec.cpp File....................................37

Misc Problems...37

3

Codec Effects Software

What is offered here is a complete Effects Programming Software package for the
LillyGo TAudio DSP audio development board. It is basically the same software
package found on my https://www.jtalbert.xyz/ESP32/ website with only a few
changes specific to this board, namely the incorporation of NeoPixels and an SD Card
playback.

Please read the tutorial PDF "Codec Software" for a complete, more detailed
description of the codec effects software package and the Effects example used here.

The code was written on the PlatformIO IDE with an Arduino Framework, all from
Visual Studio Code (VSC) as shown in the platformio.ini file:

[env:esp32dev]
platform = espressif32@5.2.0
board = esp32dev
framework = arduino
monitor_speed = 115200
lib_deps =
adafruit/Adafruit NeoPixel@^1.10.7
SPI
Wire
SD

This board uses the WM8978 Codec, the same one used on the PÚCA. The codec
driver, used in the codec files -- codec.h, codec.cpp, set_codec.h, and set_codec.cpp,
was readily available from the PÚCA GitHub.

The LillyGo TAudio DSP
The TTGO TAudio board by LillyGo is an open-source, Arduino-compatible ESP32
development board for audio and digital signal processing (DSP) applications (http:/
/www.lilygo.cn/prod_view.aspx?TypeId=50063&Id=1171). It is no longer on the
LillyGo product list and is hard to find. Here we will mainly be using it to demonstrate
the addition of NeoPixels and SD Card audio playback to our Codec Software Package.

Here is a list of its features:

4

https://www.jtalbert.xyz/ESP32/
http://www.lilygo.cn/prod_view.aspx?TypeId=50063&Id=1171
http://www.lilygo.cn/prod_view.aspx?TypeId=50063&Id=1171

Espressif official ESP32-WROVER module
WIFI
bluetooth
4MB Flash
4MB PSRAM
Lithium battery interface, 500mA Max charging current
MicroSD Card Slot, support SD and SPI mode
Audio WM8978 Codec
12Bits WS2812B RGB, 19 NeoPixel LEDs
MPU9250 Gyroscope Compass 9-Axis Sensor

TAudio Controller Hardware

5

The figure above illustrates some of the hardware features of the TTGO TAudio board
along with GPIO pin connections. Here is a list of those features with short
descriptions.

1. A ESP32 Wrover3 processor by Espressif.

2. A Wolfrom WM8978 Audio Codec with I2S and I2C interfaces.

 The four I2S interface connections are shown in the figure. The
Master Clock MCLK pin used is GPIO 0. The I2C pin
connections are I2C_SDA GPIO-19 and I2C_SCL GPIO-18.

 There are two stereo DAC outputs readily available. Lout1 and
Rout1 are each connected to a stereo Miniphone Headphone jack
after a series resistor and capacitor. Lout2 and Rout2 are available
straight from the WM8978 pins to the convenient 24-pin header.
Out3 and Out4 are left unconnected.

 The only readily available ADC input is one electret microphone
which is connected to both L1 (plus and negative) and R1 (plus and
negative). The plus and minus mic connections also run to two
circuit board hole pads marked + and - and also marked with a
white circle on the rear of the board. These may be useful for an
external microphone. The other Codec audio inputs - L2, R2, AuxL
and AuxR - unfortunately, are left unconnected and thus pretty
much unaccessible.

3. MPU9250 9 DOF 16 Bit Gyroscope Acceleration Magnetic Sensor
9-Axis Attitude +Gyro+Accelerator+Magnetometer Sensor Module

 This motion sensor shares the same I2C interface with the Codec

on pins I2C_SDA GPIO-19 and I2C_SCL GPIO-18, both with
pullup resistors. Its chip select AD0/SD0 is tied high.

 There are several online libraries available for this sensor.

6

4. 19 RGB NeoPixel LEDs on the back of the board.

 These are controlled from GPIO-22. A green LED is also
connected to this pin. Pads for a header, including GPIO-22 and
21 and power, are shown on the figure above. An on-board slide
switch can turn of or on the power to the NeoPixels.

5. An SD Card Slot

With connections for an SPI Interface are shown on the figure
above.

6. Three pushbutton switches along with Reset.

3 normally-open pushbutton switches are connected to GPIO pins
34, 36(VP) and 39(VN). These pins are are also available on the
24-pin header. They can be used for analog controllers such as
potentiometers but be sure to include a small series resistor, such as
470Ω, to protect against the 3.3v pot connection shorting to GND
when the pushbutton is pressed.

7. 24-pin Header

This convenient header is detailed in the figure above. It has
connections for codec audio outputs, a second I2S interface, power
connections, the reset pin, and several GPIO pins available for
external controllers.

The figure on the next page shows some simple circuits needed for
hooking up potentiometers, switches, LEDs, and light sensors to the
ESP32 GPIO pins. The pin connections shown are from another
project, but they could easily be switched to any number of the
GPIO pins available from the LillyGo 24-pin header.

7

10k
linear

470Ω

3.3v

100k
linear

470Ω

3.3v

100k
linear

470Ω

3.3v

10k
linear

470Ω

3.3v

internal
pullup470Ω

470Ω

10k to 1M
0.3v to 3.0v
Light Sensor

100k

3.3v

470Ω

POT1 - 32

POT2 - 34

POT3 - 35

POT4 - 33

KEY1 GPIO 14

GPIO 04 GPIO 02

ESP32 / PUCA
Sensor — Controller Circuits

John Talbert 2023

KEY2 GPIO 13

KEY3 GPIO 15

KEY4 GPIO 21

Example
470Ω’s for pots and switches are for safety,

in case pin is defined as an output

8

Codec Effects Software Package

There are a few GitHub repositories for the LillyGo TTGO TAudio board at https:/
/github.com/LilyGO/TTGO-TAudio and https://github.com/goofy2k/TTGO-TAudio.

On my website at https://www.jtalbert.xyz/ESP32/ I've worked to create an audio
effects software package for most any audio codec ESP32 board that is easier to use
than the usual ADF/IDF libraries available and has full documentation and tutorials.
This software package is available for download on this site along with this PDF. It is
not yet available on a GitHub repository as I have not yet taken the time to set up an
account and learn how to use it.

The package was created on the PlatformIO IDE with an Arduino Framework, all
from Visual Studio Code (VSC). As such, with a few modification, it could be run
from the Arduino IDE.

Most of the package files are written as .h/.cpp file pairs (header/code files) with c++
OOP Class structures. The full capabilities of the ESP32 are utilized, special features
such as dual core processing, FreeRTOS, Floating Point Unit (FPU) calculations, I2C,
SPI, and Direct Memory Access (DMA) integrated with the I2S interface to access the
Codec ADCs and DACs.

What follows is a short description of the files that make up this Codec Software
Package for the ESP32.

1. codec -- The driver for a specific codec.

2. controller_mod -- A base class container for all possible analog and
digital controllers such as switches and potentiometers.

3. task -- Task functions for polling the analog and digital controllers.
Task functions for System Monitoring. A setup function to place
and start up the tasks.

4. bsdsp -- Digital Signal Processing class tools for the effects.

9

https://github.com/LilyGO/TTGO-TAudio
https://github.com/LilyGO/TTGO-TAudio
https://github.com/goofy2k/TTGO-TAudio
https://www.jtalbert.xyz/ESP32/

5. set_settings, set_codec, set_module -- Overall settings for the
various package components.

6. main -- The main entry file that pulls it all together with the Effect
Processing code.

The LillyGo TTGO TAudio board is one of several ESP32/Codec projects that have
successfully used this Effects Software Package. For a more complete description of the
Codec Effects Software Package please read the documentation PDFs for these other
Codec projects at https://www.jtalbert.xyz/ESP32/, especially the "Codec Software"
pdf.

The remainder of the paper will describe how to extend this Codec Software to include
NeoPixel functionality and Audio Playback from an SD Card Reader, both special
features of the LillyGo TAudio board.

NeoPixel LEDs

 Description

The WS2812 Integrated Light Source — or NeoPixel in Adafruit parlance — is
the latest advance in the quest for a simple, scalable and affordable full-
color LED. Red, green and blue LEDs are integrated alongside a driver chip
into a tiny surface-mount package controlled through a single wire. They
can be used individually, chained into longer strings or assembled into
still more interesting form-factors.

Not all addressable LEDs are NeoPixels. “NeoPixel” is Adafruit’s brand for
individually-addressable RGB color pixels and strips based on the
WS2812, WS2811 and SK6812 LED/drivers, using a single-wire control
protocol.

The above description is from the Adafruit website at https://learn.adafruit.com/
adafruit-neopixel-uberguide. There are basically three methods for driving a string of
NeoPixels from a single digital line. The three methods are described in this web page,
https://blog.ja-ke.tech/2019/06/02/neopixel-performance.html.

10

https://www.jtalbert.xyz/ESP32/
https://learn.adafruit.com/adafruit-neopixel-uberguide
https://learn.adafruit.com/adafruit-neopixel-uberguide
https://blog.ja-ke.tech/2019/06/02/neopixel-performance.html

 NeoPixels on TAudio

The TAudio has 19 NeoPixels mounted in a circle on the back of the circuit board.
They are all driven from GPIO pin 22. Interestingly, this pin also controls a Green
LED on the front of the board. Since loading all 19 LEDs with a color from GPIO 22
takes less than a millisecond, loading a steady high or low in between NeoPixel loads
will work fine for setting the Green LED.

If more NeoPixels are needed, the 5-pin header with power, pin22 and pin21 can be
used. Be sure to first consult the Arduino web tutorial for power requirements.

 NeoPixel Library

The NeoPixels require a library to operate. Here I've chosen "Adafruit_NeoPixel".
Loading a library into your software project is easy within VSC (Studio Visual Code).
Click on the "Cricket" sidebar icon. Scroll through the menu QuickAccess/
PIO_Home/Open. The PlatformIO Window that comes up with the large Cricket icon
has a sidebar with a "Libraries" icon. Clicking that will bring up a search window.
Enter "Adafruit NeoPixels" to get a number of available libraries. Now you can
explore everything about the library you select. Make sure the list of platforms for the
library includes "Espressif 32" which means it will work with the ESP32 on your
board.

Once you are sure about the library you want, click "Add to Project" and select the
project name from a list of all your software projects. The installer will then download
the library to the .pio/libdeps folder in your project and it will make a note of the
install in the platformio.ini file with the line

lib_deps =
 adafruit/Adafruit NeoPixel@^1.10.7

Note the version number for the library. Sometimes project code can break with a new
version of a library. To prevent that from occurring, the actual library, at a specific
version, is stored with your project in the .pio folder.

Conveniently, all the library files can be viewed from the VSC project menu. Here I
chose the library Example file "strandtest" to incorporate into my own project files.

11

 The Set_Settings File

The first step in incorporating NeoPixel functionality into our Software Package is to
define any constants such as GPIO pin connections among other things. This is done in
the set_settings.h file.

#ifndef SETTINGS_H_
#define SETTINGS_H_

 #pragma once
 #include "codec.h"
 #include <Arduino.h>
 #include "driver/i2s.h"

 #define SAMPLE_RATE (32000)
 #define BITS_PER_SAMPLE (16)
 #define CHANNEL_COUNT 2

 //LILLYGO T_AUDIO PIN ASSIGNMENTS
 //~~~~~~~~~~~~~~~~~~~~~~~~~~~

 #define POT1 32
 #define POT2 34
 #define POT3 35
 #define POT4 36
 #define POT5 39

 #define LED1 22

 #define KEY1 39
 #define KEY2 34
 #define KEY3 36
 #define KEY4 23

 #define TOUCH_THRESHOLD 30

//ESP32-Codec PIN SETUP
#define I2S_NUM (0)
#define IS2_MCLK_PIN (0)
#define I2S_BCLK (33)
#define I2S_LRC (25)
#define I2S_DIN (27)
#define I2S_DOUT (26)

#define Codec_SDA 19
#define Codec_SCK 18
#define I2C_MASTER_SCL_IO 18
#define I2C_MASTER_SDA_IO 19
#define I2C_SDA 19
#define I2C_SCL 18

#define Codec_ADDR 0x1A //WM8978
#define WM8978_ADDR 0X1A //WM8978

12

#define I2C_MASTER_NUM 1 /*!< I2C port number for master dev */
#define I2C_MASTER_FREQ_HZ 100000
#define I2C_MASTER_TX_BUF_DISABLE 0
#define I2C_MASTER_RX_BUF_DISABLE 0

//SD Card Reader Settings / SPI interface
#define SD1 04
#define SD2 12
#define SD3 13
#define SDA 23 //??

#define SD_CARD_CS 13
#define SD_CARD_MISO 02
#define SD_CARD_MOSI 15
#define SD_CARD_CLK 14

#define SAMPLES_BUFFER_SIZE 1024

//NEO PIXEL SETTINGS
#define PIN 22
#define NUM_LEDS 19
#define BRIGHTNESS 5

//audio processing frame length in samples (L+R) 64 samples (32R+32L) 256
Bytes
//Used as size of i2s input and output buffers
#define FRAMELENGTH 256
//audio processing priority
#define AUDIO_PROCESS_PRIORITY 10

//SRAM used for DMA = DMABUFFERLENGTH * DMABUFFERCOUNT * BITS_PER_SAMPLE/8
* CHANNEL_COUNT
//Lower number for low latency, Higher number for more signal processing
time
//Must be value between 8 and 1024 in bytes
#define DMABUFFERLENGTH 128

//number of above DMA Buffers of DMABUFFERLENGTH
#define DMABUFFERCOUNT 8

In this file pin labels are assigned to any possible controllers such as pots and switches,
LEDs such as LED1 assigned to pin 22, the I2S pins used by the Codec, the I2C pins
used by the Codec and Motion Sensor, the SPI interface pins used by the SD Card,
DMA memory settings used by the Codec, and Codec audio sample settings.

Specific to the NeoPixels, PIN is the label for the serial pixel data communications
line, the number of LEDs on the TAudio board is labeled as NUM_LEDS, a general
LED brightness value from 1 to 10 is given the label BRIGHTNESS.

//NEO PIXEL SETTINGS
#define PIN 22
#define NUM_LEDS 19
#define BRIGHTNESS 5

13

 The Task File

The package task file contains several tasks set up as simple functions: a task to poll
all analog controller values called controltask(), a task to poll all the digital controller
values called buttontask(), a task to print to the monitor running controller values and
CPU loads. These tasks must all appear to be running simultaneously even though
they compete for the same processor time - a job for FreeRTOS.

Each task function is slowed down a bit with the RTOS tool VTaskDelay(wait time).
This is a non-blocking delay that allows other task threads to get processor time while
another task is in a VTaskDelay wait. The wait time for polling controller values can
be set as high as 20 ms without any perceived slowing of response times for manual
controllers.

The task file function taskSetup() is used to activate all these task functions with the
RTOS tool xTaskCreatePinnedToCore() as shown here:

//the main audio processing task is placed in the main loop() of main.cpp
(core1)

//decoding button presses
xTaskCreatePinnedToCore(buttontask, "buttontask", 4096, NULL,
AUDIO_PROCESS_PRIORITY, NULL,0);

//decoding potentiometer and other analog sensors
xTaskCreatePinnedToCore(controltask, "controltask", 4096, NULL,
AUDIO_PROCESS_PRIORITY, NULL,0);

//audio frame monitoring task used by systemMonitor
xTaskCreatePinnedToCore(framecounter_task, "framecounter_task", 4096, NULL,
AUDIO_PROCESS_PRIORITY, NULL,0);

 //Neo Pixel Task originally for LillyGo TAudio board with 19 LEDs
xTaskCreatePinnedToCore(neopixeltask, "NeoPixeltask", 4096, NULL, 5,
NULL,0);

Each task is assigned one of the two ESP32 processor cores, zero in this case, as
indicated by the final zero element in the xTask function. Processor core 1 is reserved
for the more time intensive and time sensitive audio DSP task.

Notice the neopixeltask line among the four activated tasks. The task file is the
perfect place to insert NeoPixel functionality in our Software Package.

 The NeoPixel Task

14

One Example file from the Adafruit NeoPixel Library was selected to serve as the
basis of a neopixeltask(). As usual, in c++ programming code placement is one of the
more difficult problems to overcome. Coding the neopixeltask() function was not as
simple as placing the entire Example file into a function. It must be carefully spread
out within the task.cpp file. Here is the task file code that applies to the neopixel task.
First, in the task.h header file:

#include "set_settings.h"
#include "set_module.h"
#include <Adafruit_NeoPixel.h>

void controltask(void* arg); //task for pots
void buttontask(void* arg); //task for switches
void neopixeltask(void* arg); //task for NeoPixel LEDs
void acceltask(void* arg); //task for MPU9250 accel

Note the #include line for the Adafruit NeoPixel Library, and the neopixeltask()
function declaration line.

Then, in the task.cpp code more detailed definition file:

// Parameter 1 = number of pixels in strip
// Parameter 2 = Arduino pin number (most are valid)
// Parameter 3 = pixel type flags, add together as needed:
// NEO_KHZ800 800 KHz bitstream (most NeoPixel products w/WS2812 LEDs)
// NEO_KHZ400 400 KHz (classic 'v1' (not v2) FLORA pixels, WS2811 drivers)
// NEO_GRB Pixels are wired for GRB bitstream (most NeoPixel products)
// NEO_RGB Pixels are wired for RGB bitstream (v1 FLORA pixels, not v2)
// NEO_RGBW Pixels are wired for RGBW bitstream (NeoPixel RGBW products)

// Create an instance object of Adafruit_NeoPixel called strip
Adafruit_NeoPixel strip = Adafruit_NeoPixel(NUM_LEDS, PIN, NEO_GRB +
NEO_KHZ800);

 //~~~~~~~~~~~NeoPixel Functions~~~~~~~~~~~~~~~~
 //~~~~~~~~~~used in neopixeltask()~~~~~~~~~~~~
 //~~~

 // Input a value 0 to 255 to get a color value.
 // The colours are a transition r - g - b - back to r.
 uint32_t Wheel(byte WheelPos) {
 WheelPos = 255 - WheelPos;
 if(WheelPos < 85) {
 return strip.Color(255 - WheelPos * 3, 0, WheelPos * 3);
 }
 if(WheelPos < 170) {
 WheelPos -= 85;
 return strip.Color(0, WheelPos * 3, 255 - WheelPos * 3);
 }
 WheelPos -= 170;
 return strip.Color(WheelPos * 3, 255 - WheelPos * 3, 0);
 }

 // Fill the dots one after the other with a color

15

 void colorWipe(uint32_t c, uint8_t wait) {
 for(uint16_t i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, c);
 strip.show();
 vTaskDelay(wait);
 }
 }

 void rainbow(uint8_t wait) {
 uint16_t i, j;

 for(j=0; j<256; j++) {
 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, Wheel((i+j) & 255));
 }
 strip.show();
 vTaskDelay(wait);
 }
 }

//Slightly different, this makes rainbow equally distributed throughout
 void rainbowCycle(uint8_t wait) {
 uint16_t i, j;

 for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
 for(i=0; i< strip.numPixels(); i++) {
 strip.setPixelColor(i, Wheel(((i * 256 / strip.numPixels()) + j) &
255));
 }
 strip.show();
 vTaskDelay(wait);
 }
 }

 //Theatre-style crawling lights.
 void theaterChase(uint32_t c, uint8_t wait) {
 for (int j=0; j<10; j++) { //do 10 cycles of chasing
 for (int q=0; q < 3; q++) {
 for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
 strip.setPixelColor(i+q, c); //turn every third pixel on
 }
 strip.show();

 vTaskDelay(wait);

 for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
 strip.setPixelColor(i+q, 0); //turn every third pixel off
 }
 }
 }
 }

 //Theatre-style crawling lights with rainbow effect
 void theaterChaseRainbow(uint8_t wait) {
 for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
 for (int q=0; q < 3; q++) {
 for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
 strip.setPixelColor(i+q, Wheel((i+j) % 255)); //turn every
third pixel on
 }

16

 strip.show();

 vTaskDelay(wait);

 for (uint16_t i=0; i < strip.numPixels(); i=i+3) {
 strip.setPixelColor(i+q, 0); //turn every third pixel off
 }
 }
 }
 }

//~~~
//~~~~~~~~~~~NEOPIXEL LED TASK~~~~~~~~~~~~~~~~
//~~~

void neopixeltask(void* arg)
{
 strip.setBrightness(BRIGHTNESS);
 strip.begin();
 strip.show(); // Initialize all pixels to 'off'

while(true) //NeoPixel functions below defined at start of task.cpp
 {

 // Some example procedures showing how to display to the pixels:
 //colorWipe(strip.Color(255, 0, 0), 50); // Red
 //colorWipe(strip.Color(0, 255, 0), 50); // Green
 //colorWipe(strip.Color(0, 0, 255), 50); // Blue
 //colorWipe(strip.Color(0, 0, 0, 255), 50); // White RGBW

 int pixcolor = (int8_t) (myPedal->gain * 255); //control color

 // Send a theater pixel chase, "gain" controls red to blue
 theaterChase(strip.Color(pixcolor, 0, (255 - pixcolor)), 20);
 //theaterChase(strip.Color(127, 0, 0), 50); // Red
 //theaterChase(strip.Color(0, 0, 127), 50); // Blue

 //rainbow(20);
 //rainbowCycle(20);
 //theaterChaseRainbow(50);
 }
}

The first requirement is to create an instance object of the Adafruit_NeoPixel Library
Class and call it "strip". This must happen at the start of the task.cpp file if we are to
be granted access to the Adafruit Class methods from within the neopixeltask()
function as well as from within the specialized Pixel effects functions to follow.

Adafruit_NeoPixel strip = Adafruit_NeoPixel(NUM_LEDS, PIN, NEO_GRB + NEO_KHZ800);

This line will also trigger the Class Constructor Method which needs some
information to set up the NeoPixel communication. Information such as the number of
LED Pixels on the TAudio NeoPixel "strip", the GPIO pin to use for the serial data,
and the NeoPixel type used. NUM_LEDS and PIN are labels defined in the
set_settings.h file. NEO_GRB and NEOKHZ800 are labels defined in the Adafruit

17

NeoPixel library and described here in the code comments.

Next to define are six short functions from the library Example file, each of which
creates a specific NeoPixel effect. Consult the Adafruit_NeoPixel library to find out
the details of how these work. Each pixel effects function originally included the
Arduino delay() to time the display effects. Those delay() functions have all been
replaced with the RTOS VTaskDelay().

All this preparation results in a super simple neopixeltask(). It starts off with three
Adafruit_NeoPixel library methods: setBrightness, begin and show. The details of
these three methods can be found in the library. The bulk of the neopixeltask() is then
an infinite while(1) loop that continually repeats the pixel effects lined up within the
loop. The Example script runs through quite a showcase of pixel effects using the
pixel functions defined above, though here I've commented out all but one for the
following demonstration.

An important advantage to placing the neopixeltask() within the task.cpp file is that it
has access to virtually all the controller parameters and variables set up in the
set_module files. Here the "gain" variable will be used to affect both the NeoPixels
and the audio playback volume.

The software effects package presented here and available for download on
jtalbert.xyz is set up with a simple audio effect. Playback volume of a wav file from
the SD Card is controlled from two board pushbuttons. The code in set_module.cpp
creates the variable "gain" with a value from zero to one, controlled by the two
pushbuttons, one for increasing the gain towards one, and another for decreasing the
gain toward zero. This gain variable is multiplied with the audio samples coming from
the SD wav file before they are presented to the Codec DAC resulting in output
volume control.

 int pixcolor = (int8_t)(myPedal->gain * 255);
 // Send a theater pixel chase, "gain" controls red to blue
 theaterChase(strip.Color(pixcolor, 0, (255 - pixcolor)), 20);

In the code above the neopixeltask() function uses the same "gain" variable, accessed
with "myPedal->gain", to affect the color of the NeoPixel ring. It is applied to the
Red and Blue pixels of the RGB (red, green, blue) LEDs resulting in red pixels for full
volume output, blue pixels for zero volume output, and all variations in between. This
is just a simple example. Any pixel control you can imagine can be set up in the
set_module.cpp file and neopixeltask() function. See more detailed descriptions and
examples of controller setups in the other PDF files on the jtalbert.xyz website.

18

SD Card Playback with Effects

The LillyGo TTGO TAudio board includes an SD Card Reader. The LyraT and A1S
Audio Kit boards, described on my website https://jtalbert.xyz/ESP32/, also include
SD Card Readers so this section applies to them as well. Alternatively, you can buy an
external SD Card Module for about $10 with as few as 6 connections for the ESP32.

Here we will add SD Card audio playback with Effects to the "Codec Effects
Software Package" with the creation of two new files -- sd_play.h and sd_play.cpp.

Acknowledgments are due to the excellent XTronical tutorials at https:/
/www.xtronical.com/i2s-ep1/ upon which I based my SD Card Library. Also very
helpful were some tutorials at Random Nerd Tutorials -- https:/
/randomnerdtutorials.com/esp32-microsd-card-arduino/ and https:/
/randomnerdtutorials.com/esp32-spi-communication-arduino/. https:/
/microcontrollerslab.com/microsd-card-esp32-arduino-ide/

SPI Protocol

The microSD card slot communicates using SPI communication protocol and for this
you need four GPIO lines:

▪ MISO: Master In Slave Out, SPI Output from the SD Card
▪ MOSI: Master Out Slave In, SPI Input to the SD Card
▪ SCK: Serial Clock
▪ CS /SS: Chip Select

By default ESP32 has two SPI communication channels VSPI and HSPI. Each has a
default pin settings for MOSI, MISO, SCK and CS. VSPI is 23, 19, 18, 5 and HSPI
is 13, 12, 14, 15. But we can also map these pins to other GPIO pins using the line

 SPI.begin(SD_CARD_CLK, SD_CARD_MISO, SD_CARD_MOSI, SD_CARD_CS);

The LillyGo TAudio board uses unconventional GPIO pins for the SD SPI interface so
the line above must be called to initialize the SPI protocol. The pins the TAudio uses
for the SD SPI are set up in the file set_settings.h:

#define SD_CARD_CS 13
#define SD_CARD_MISO 02
#define SD_CARD_MOSI 15

19

https://jtalbert.xyz/ESP32/
https://www.xtronical.com/i2s-ep1/
https://www.xtronical.com/i2s-ep1/
https://randomnerdtutorials.com/esp32-microsd-card-arduino/
https://randomnerdtutorials.com/esp32-microsd-card-arduino/
https://randomnerdtutorials.com/esp32-spi-communication-arduino/
https://randomnerdtutorials.com/esp32-spi-communication-arduino/
https://microcontrollerslab.com/microsd-card-esp32-arduino-ide/
https://microcontrollerslab.com/microsd-card-esp32-arduino-ide/

#define SD_CARD_CLK 14

Libraries for the SD

The plan for adding SD audio playback to our Software Package is to create an SDplay
Class with two new files, sd_play.h and sd_play.cpp. Three external libraries must be
included in sd_play.h: FS.h to handle files, SD.h to interface with the microSD card
and SPI.h to use SPI communication protocol.

These three libraries are part of the Arduino core for the ESP32. The Arduino core,
Espressif/Arduino-esp32, should be automatically available when you designate
framework=arduino during the Project setup; however, I've found that the compiler
will not automatically recognize code from these libraries. You must use #include
statements in sd_play.h for each of the libraries and/or designate them in the
platformio.ini file with the lines:

lib_deps =
adafruit/Adafruit NeoPixel@^1.10.7
SPI
Wire
SD

Each compile build of Software Package will then confirm this with the following
lines:

Dependency Graph
|-- Adafruit NeoPixel @ 1.10.7
|-- SPI @ 2.0.0
|-- Wire @ 2.0.0
|-- SD @ 2.0.0
| |-- FS @ 2.0.0
| |-- SPI @ 2.0.0

From this Dependency Graph it looks like FS and SPI libraries are included within the
SD library so you may only need #include <SD.h> in the file sd_play.h.

Before examining sd_play.h and sd_play.cpp it might be useful to first take a look at
the SD library methods available for our new sd_play files. The Arduino Reference
page at https://www.arduino.cc/reference/en/libraries/sd/ contains a full description of
the SD Library. From this site page you can download the latest SD Library zip, check
out some example code, and explore all the library methods. As expected, the SD
Library includes the File Library FS with methods listed for each:

20

https://www.arduino.cc/reference/en/libraries/sd/

SD class
• begin()
• exists()
• exists()
• mkdir()
• open()
• remove()
• rmdir()

File class
• name()
• available()
• close()
• flush()
• peek()
• position()
• print()
• println()
• seek()
• size()
• read()
• write()
• isDirectory()
• openNextFile()
• rewindDirectory()

The four methods I ended up using are marked in the above list. Other methods such
as openNextFile(), available(), exists() look interesting for future revisions. Here are
descriptions of the four methods:

SD - begin()

Initializes the SD library and card. This begins use of the SPI bus and the
chip select pin. Note that even if you use a different chip select pin, the
hardware SS pin must be kept as an output or the SD library functions will
not work.

Syntax
SD.begin()
SD.begin(cspin)

21

https://www.arduino.cc/reference/en/libraries/sd/begin
https://www.arduino.cc/reference/en/libraries/sd/exists
https://www.arduino.cc/reference/en/libraries/sd/exists
https://www.arduino.cc/reference/en/libraries/sd/mkdir
https://www.arduino.cc/reference/en/libraries/sd/open
https://www.arduino.cc/reference/en/libraries/sd/remove
https://www.arduino.cc/reference/en/libraries/sd/rmdir
https://www.arduino.cc/reference/en/libraries/sd/name
https://www.arduino.cc/reference/en/libraries/sd/available
https://www.arduino.cc/reference/en/libraries/sd/close
https://www.arduino.cc/reference/en/libraries/sd/flush
https://www.arduino.cc/reference/en/libraries/sd/peek
https://www.arduino.cc/reference/en/libraries/sd/position
https://www.arduino.cc/reference/en/libraries/sd/print
https://www.arduino.cc/reference/en/libraries/sd/println
https://www.arduino.cc/reference/en/libraries/sd/seek
https://www.arduino.cc/reference/en/libraries/sd/size
https://www.arduino.cc/reference/en/libraries/sd/read
https://www.arduino.cc/reference/en/libraries/sd/write
https://www.arduino.cc/reference/en/libraries/sd/isdirectory
https://www.arduino.cc/reference/en/libraries/sd/opennextfile
https://www.arduino.cc/reference/en/libraries/sd/rewinddirectory

Parameters
cspin (optional): the pin connected to the chip select line of the SD card;
defaults to the hardware SS line of the SPI bus.
Returns
1 on success, 0 on failure.

SD - open()

Opens a file on the SD card. If the file is opened for writing, it will be
created if it doesn’t already exist (but the directory containing it must
already exist).

Syntax
SD.open(filepath)
SD.open(filepath, mode)
Parameters
filepath: the name of the file to open, which can include directories
(delimited by forward-slashes, /).
mode (optional): the mode in which to open the file. Mode can be FILE_READ
(open the file for reading, starting at the beginning of the file) or
FILE_WRITE (open the file for reading and writing, starting at the end of
the file).

FS - read()

Read from the file. read() inherits from the Stream utility class.

Syntax
file.read()
file.read(buf, len)
Parameters
file: an instance of the File class (returned by SD.open()).
buf: an array of characters or bytes.
len: the number of elements in buf.
Returns
The next byte (or character), or -1 if none is available.

FS - seek()

Seek to a new position in the file, which must be between 0 and the size of
the file (inclusive).

Syntax
file.seek(pos)
Parameters
file: an instance of the File class (returned by SD.open()).
pos: the position to which to seek (unsigned long).
Returns
1 on success, 0 on failure.

22

The SD_PLAY.h File
/* --

Title: SD Card Wav Player

Description:
 Simple example to demonstrate the fundementals of playing WAV
files(digitised sound) from an SD Card via the I2S interface of the ESP32.
Plays WAV file from SD card. To keep this simple the WAV must be stereo and
16bit samples. The Samples Per second can be anything. On the SD Card the
wav file must be in root and called wavfile.wav Libraries are available to
play WAV's on ESP32, this code does not use these so that we can see what
is happening. This is part 3 in a tutorial series on using I2S on ESP32.
See the accompanying web page (which will also include a tutorial video).

Boring copyright/usage information:
(c) XTronical, www.xtronical.com
Use as you wish for personal or monatary gain, or to rule the world.
However you use it, no warrenty is provided etc. etc. It is not listed as
fit for any purpose you perceive It may damage your house, steal your
lover, drink your beers and more.

http://www.xtronical.com/i2s-ep3

 --
*/

#ifndef __SDPLAY_H
#define __SDPLAY_H

#include <Arduino.h>
#include "SD.h" // SD Card library, usually part of the standard install
#include "driver/i2s.h" // Library of I2S routines, ESP32 standard install
#include "set_settings.h"

class SDplay
{
 public:

 File WavFile;

 static byte Samples[]; // Array for frame data from WAV
 static uint32_t BytesReadSoFar;// Number of bytes read from file so far
 static uint16_t BufferIdx; // Current pos of buffer to output next

 struct WavHeader_Struct
 {
 // RIFF Section
 char RIFFSectionID[4]; // Letters "RIFF"
 uint32_t Size; // Size of entire file less 8
 char RiffFormat[4]; // Letters "WAVE"

 // Format Section
 char FormatSectionID[4]; // letters "fmt"
 uint32_t FormatSize; // Size of format section less 8
 uint16_t FormatID; // 1=uncompressed PCM
 uint16_t NumChannels; // 1=mono,2=stereo

23

 uint32_t SampleRate; // 44100, 16000, 8000 etc.
 uint32_t ByteRate; // =SampleRate * Channels * (BitsPerSample/8)
 uint16_t BlockAlign; // =Channels * (BitsPerSample/8)
 uint16_t BitsPerSample; // 8,16,24 or 32

 // Data Section
 char DataSectionID[4]; // The letters "data"
 uint32_t DataSize; // Size of the data that follows
 }WavHeader;

 private:

 size_t BytesWritten; // Returned by the I2S write routine,
 uint16_t BytesToRead; // Number of bytes to read from the file
 uint8_t* DataPtr; // Point to next data to send to I2S
 uint16_t BytesToSend; // Number of bytes to send to I2S
 bool done = false;

 public:
 void ReadFile(byte* Samples); // Read WAV file from SD
 void FillI2SBuffer(byte* Samples); // Write SD Buffer to DMA tx buffer
 void SDCardInit();
 void OpenWaveFile();
 bool ValidWavData(WavHeader_Struct* Wav); //Check for valid types
 void PrintWAVHeader(WavHeader_Struct* Wav); //Print WAV Header
 void PrintData(const char* Data,uint8_t NumBytes); // Print char bytes

};

#endif

This is the "header" file for our new Class SDplay. It lists or "declares" all the class
elements which are to be "defined" in detail in the sd_play.cpp file. It first declares all
the "attributes" (variables) used in the class and then the "methods" (functions) used.
Let's look at a few of the attributes.

 WaveFile

File WaveFile

"File" is the class created in the FS Library. Here "WaveFile" is declared as an
instance object of the class "File". As such it can access any of the FS Library
methods listed in the previous section such as WaveFile.read() and WaveFile.seek().
However, it has yet to be empowered by associating it with an actual file. That will
happen within the method OpenWaveFile() as shown below from the sd_play.cpp
file.

void SDplay::OpenWaveFile()
{
 WavFile = SD.open("/wavfile.wav"); // Open wavfile.wav at root of SD
 if(WavFile==false)
 Serial.println("Could not open 'wavfile.wav'");

24

 else
 {

// Read in the WAV header, which is first 44 bytes of the file.
// We have to typecast to bytes for the "read" function

 WavFile.read((byte *) &WavHeader,44);

// Print the header data to serial, optional!
 PrintWAVHeader(&WavHeader);

// optional if you're sure the WAV file will be valid.
 if(ValidWavData(&WavHeader))

 Serial.println("Wav file is valid'");
 }
}

The line WavFile = SD.open("/wavfile.wav"); uses the open() method from the SD
Class. "SD" has already been defined as an instance object of the SD class. The File
object WavFile is now associated with an actual audio wav file "wavfile.wav" on the
SD card. It is expected that an audio file has already been loaded onto the SD card and
it is called "wavfile.wav". If not, the user will sadly be informed that it "Could not
open 'wavfile.wav' " printed out on their screen Monitor.

 Samples[]

Samples[] is an array of bytes as declared in the sd_play.h file with the line static
byte Samples[]; . The "static" keyword means that only one Samples[] array will
exist to be shared by all instance objects of the SDplay Class and within all the Class
methods.

The Samples buffer array will be filled with audio samples from wavfile.wav on the
SD Card using the command WavFile.read(Samples,BytesToRead); Memory for the
Samples array is allocated in the file sd_play.cpp with this line:

 byte SDplay::Samples[SAMPLES_BUFFER_SIZE];

The label SAMPLES_BUFFER_SIZE is defined, along with other #define Labels, in
the file set_settings.h. Currently it is set at 1024 bytes. This value is also referred to
as the sample Framesize. A Frame is a chunk of audio samples that will be
downloaded from the wavfile for processing before being dumped to the DAC DMA
memory buffers.

As a rule, DSP (Digital Signal Processing) can only happen piecemeal, on a small
frame of samples with the following steps: first, access to the SD Card is set up, a
frame of samples are read from the wavfile, the frame of samples are processed for the
desired audio effect, assess to the DMA buffers is set up, the frame of samples are

25

loaded into the DMA buffers to be sent to the DACs one at a time at the set
SampleRate.

With the DMA buffers constantly pulling out samples to feed the DAC you run the risk
of the DMA DAC buffer running out of samples if the DSP takes too long on a frame
of data that's too large. For this reason the signal processing is always done on smaller
framesize chunks of samples instead of the entire wavfile. Similarly, if the framesize is
too small, the increased overhead time used in repeatedly setting up access to the SD
Card and DMA also runs the risk of not getting the samples out in a timely manner.
Framesize and DMA buffer sizes can both be adjusted in set_settings.h to avoid such
problems.

On another point, a notable property of all C++ arrays is that the array name, without
the brackets, acts as a pointer to the memory address of the start of the array data. To
keep track of where you are in the array you can create a pointer into the array with the
line:

DataPtr=Samples+BufferIdx;

The Samples[] array is used in two SDplay Class methods, ReadFile() and
FillI2SBuffer() to be described later.

 WaveHeader Struct

"WaveHeader" is a Class attribute struct. A "struct" is a catch-all collection of
different data types. It essentially operates like a Class definition. Elements of the
struct are accessed with a dot operator like WavHeader.DataSize
"WavHeader_Struct" is a name given to the "type" of struct. It is useful for defining
the input parameters of functions or methods.

bool ValidWavData(WavHeader_Struct* Wav); // Check WAV Header for valid types
void PrintWAVHeader(WavHeader_Struct* Wav); // Print WAV Header to Monitor

In the above method declarations "Wav" is declared as the input parameter to these
methods. When the method is called, a "WavHeader_Struct" type of struct is
required as the input "Wav" ("WaveHeader", for example). The asterisk (*) indicates
that Wav is actually a pointer to a WavHeader_Struct type struct. Looking at the
details of how these two methods are defined in the file sd_play.cpp you can see that
pointers to a struct don't access elements of the struct with the dot operator. Instead
they use the -> arrow operator like Wav->DataSize

The method OpenWaveFile() shows what these two methods look like when called.

26

// Print the header data to serial, optional!
PrintWAVHeader(&WavHeader);

// optional if you're sure the WAV file will be valid.

if(ValidWavData(&WavHeader)) Serial.println("Wav file is valid'");

The input parameter to each of these methods will be WavHeader, an obvious
WavHeader_Struct type of struct; however, since the methods require a pointer to a
struct, a "&" is attached making it instead, a pointer to WavHeader.

So what is the data contained in WavHeader? WAV or Waveform Audio File Format
was developed jointly by Microsoft and IBM as an audio file standard for storing
digital audio on PC. The bulk of a wav file is uncompressed audio which is easily
edited and manipulated. The standard, most common wav file has a 44 byte header at
the start of the file before any audio data. The WavHeader struct reveals how this
header is structured. In particular, it contains information about the audio samples:

 // Format Section
 char FormatSectionID[4]; // letters "fmt"
 uint32_t FormatSize; // Size of format section less 8
 uint16_t FormatID; // 1=uncompressed PCM
 uint16_t NumChannels; // 1=mono,2=stereo
 uint32_t SampleRate; // 44100, 16000, 8000 etc.
 uint32_t ByteRate; // =SampleRate*Channels*(BitsPerSample/8)
 uint16_t BlockAlign; // =Channels * (BitsPerSample/8)
 uint16_t BitsPerSample; // 8,16,24 or 32
// Data Section
 char DataSectionID[4]; // The letters "data"
 uint32_t DataSize; // Size of the data that follows

One important element, WavHeader.DataSize, is used to detect the end of the audio
data. The two methods discussed above were built to use this header data.
PrintWAVHeader() prints out the header data to the screen monitor.
ValidWavData() will check on the validity of the wavfile to see if it is a RIFF Wave
file, the most commonly used format. Other formats cannot be read with the code
written here. Both methods are run from the OpenWaveFile() method at the start of
the Program Package code.

The SD_PLAY.cpp File
#include "sd_play.h"

File WaveFile;
// Memory allocated for frame data from WAV
byte SDplay::Samples[SAMPLES_BUFFER_SIZE];
// Number of bytes read from file so far
uint32_t SDplay::BytesReadSoFar = 0;

27

// Current pos of buffer to output next
uint16_t SDplay::BufferIdx = 0;

void SDplay::SDCardInit()
{
 pinMode(SD_CARD_CS, OUTPUT);
 digitalWrite(SD_CARD_CS, HIGH); // SD card chip select set high
 SPI.begin(SD_CARD_CLK, SD_CARD_MISO, SD_CARD_MOSI, SD_CARD_CS);

 if(!SD.begin(SD_CARD_CS)) //setup SD
 {
 Serial.println("Unable to talk to SD card!");
 while(true); // end program
 }
 else
 Serial.println("SD.begin(), Talking to SD card!");
}

void SDplay::OpenWaveFile()
{
 WavFile = SD.open("/wavfile.wav"); // Open wavfile.wav at root of SD

 if(WavFile==false)
 Serial.println("Could not open 'wavfile.wav'");

 else
 {
 // Read in the WAV header, which is first 44 bytes of the file.
 // We have to typecast to bytes for the "read" function
 WavFile.read((byte *) &WavHeader,44);

 // Print the header data to serial, optional!
 PrintWAVHeader(&WavHeader);

// optional if you're sure the WAV file will be valid.
 if(ValidWavData(&WavHeader))
 Serial.println("Wav file is valid'");
 }
}

void SDplay::ReadFile(byte* Samples)
{
 // Always fills the the Samples[] buffer with SAMPLES_BUFFER_SIZE bytes

 //check for end of wavfile
 if(BytesReadSoFar + SAMPLES_BUFFER_SIZE > WavHeader.DataSize)
 {
 //what's left at end of wav file
 BytesToRead=WavHeader.DataSize-BytesReadSoFar;

 //partial fill of Samples[] buffer
 WavFile.read(Samples,BytesToRead);

 //pack remaining bytes with silent samples
 for(int i=BytesToRead; i<SAMPLES_BUFFER_SIZE; i++) Samples[i]=0;

 WavFile.seek(44); //reset to start of WavFile
 BytesReadSoFar=0;

28

 }

 else
 {

//fill Samples[] buffer with SAMPLES_BUFFER_SIZE bytes from WavFile
 WavFile.read(Samples,SAMPLES_BUFFER_SIZE);

 BytesReadSoFar+=SAMPLES_BUFFER_SIZE; //adjust index into WavFile
 }
}

void SDplay::FillI2SBuffer(byte* Samples)
{
 // Writes SAMPLES_BUFFER_SIZE bytes to DAC DMA buffers.
 // Repeat while (!done) until you know they've all been written,
 // then you can re-fill Samples[] using ReadFile()

 done = false; //initial condition to start an i2s_write

 while(!done)
 {
 // Set address to next byte in Samples[] buffer to send out
 DataPtr=Samples+BufferIdx;

 // This is amount to send (total = less what we've already sent)
 BytesToSend=SAMPLES_BUFFER_SIZE-BufferIdx;

 // Send to DAC DMA, 1 RTOS tick to complete
 i2s_write(i2s_port_t I2S_NUM,DataPtr,BytesToSend,&BytesWritten,1);

 // increase Samples index by number of bytes actually written
 BufferIdx+=BytesWritten;

 if(BufferIdx>=SAMPLES_BUFFER_SIZE)
 {
 // finished sending out all SAMPLES_BUFFER_SIZE bytes in Samples[],
 // reset index and set done to indicate this
 BufferIdx=0;
 done=true;
 }
 else
 done=false; // DAC DMA was too full, Still more data to send
 }
}

bool SDplay::ValidWavData(WavHeader_Struct* Wav)
{
 if(memcmp(Wav->RIFFSectionID,"RIFF",4)!=0)
 {
 Serial.print("Invalid data - Not RIFF format");
 return false;
 }
 if(memcmp(Wav->RiffFormat,"WAVE",4)!=0)
 {
 Serial.print("Invalid data - Not Wave file");
 return false;
 }
 if(memcmp(Wav->FormatSectionID,"fmt",3)!=0)
 {

29

 Serial.print("Invalid data - No format section found");
 return false;
 }
 if(memcmp(Wav->DataSectionID,"data",4)!=0)
 {
 Serial.print("Invalid data - data section not found");
 return false;
 }
 if(Wav->FormatID!=1)
 {
 Serial.print("Invalid data - format Id must be 1");
 return false;
 }
 if(Wav->FormatSize!=16)
 {
 Serial.print("Invalid data - format section size must be 16.");
 return false;
 }
 if((Wav->NumChannels!=1)&(Wav->NumChannels!=2))
 {
 Serial.print("Invalid data - only mono or stereo permitted.");
 return false;
 }
 if(Wav->SampleRate>48000)
 {
 Serial.print("Invalid data - Sample rate cannot be greater than
48000");
 return false;
 }
 if((Wav->BitsPerSample!=8)& (Wav->BitsPerSample!=16))
 {
 Serial.print("Invalid data - Only 8 or 16 bits per sample permitted.");
 return false;
 }
 return true;
}

void SDplay::PrintData(const char* Data,uint8_t NumBytes)
{
 for(uint8_t i=0;i<NumBytes;i++)
 Serial.print(Data[i]);
 Serial.println();
}

void SDplay::PrintWAVHeader(WavHeader_Struct* Wav)
{
 if(memcmp(Wav->RIFFSectionID,"RIFF",4)!=0)
 {
 Serial.print("Not a RIFF format file - ");
 PrintData(Wav->RIFFSectionID,4);
 return;
 }
 if(memcmp(Wav->RiffFormat,"WAVE",4)!=0)
 {
 Serial.print("Not a WAVE file - ");
 PrintData(Wav->RiffFormat,4);
 return;
 }
 if(memcmp(Wav->FormatSectionID,"fmt",3)!=0)
 {

30

 Serial.print("fmt ID not present - ");
 PrintData(Wav->FormatSectionID,3);
 return;
 }
 if(memcmp(Wav->DataSectionID,"data",4)!=0)
 {
 Serial.print("data ID not present - ");
 PrintData(Wav->DataSectionID,4);
 return;
 }
 // All looks good, dump the data
 Serial.print("Total size :");Serial.println(Wav->Size);
 Serial.print("Format section size :");Serial.println(Wav->FormatSize);
 Serial.print("Wave format :");Serial.println(Wav->FormatID);
 Serial.print("Channels :");Serial.println(Wav->NumChannels);
 Serial.print("Sample Rate :");Serial.println(Wav->SampleRate);
 Serial.print("Byte Rate :");Serial.println(Wav->ByteRate);
 Serial.print("Block Align :");Serial.println(Wav->BlockAlign);
 Serial.print("Bits Per Sample :");Serial.println(Wav->BitsPerSample);
 Serial.print("Data Size :");Serial.println(Wav->DataSize);
}

 Setup() in main.cpp

Two of the methods defined above, SDCardInit() and OpenWaveFile(), are
executed at the start of the setup() section in main.cpp. This is the program entry
point for the entire Effects Software Package.

void setup()
{
 Serial.begin(115200);
 while(!Serial);
 delay(3000);

 //~~~~~~~~~~~codec is initialized See Codec.cpp~~~~~~~~~~~~~~~~~
 //~~~~i2c is initialized within codec.init() with initI2C()~~~~~~

 Serial.println("Initialize Codec Codec ");
 codec.init();
 codec_sets();
 Serial.println("Codec Init success!!");

 //~~I2S & SD & SD WaveFile initialized. See set_settings.cpp for I2S~~
 //~~Make sure SAMPLE_RATE = that of the wavfile on SD~~

 I2S_init();
 mySDplay.SDCardInit();
 mySDplay.OpenWaveFile();

 //~~~~~~~~~~~~~~Monitor (can be commented out)~~~~~~~~~~

 Serial.println("I2S/SD setup complete");
 runSystemMonitor(); //for testing only

} //Setup End

31

Setup() is where all interfaces, including I2S and I2C, are started up and initialized.

SDCardInit() starts up the SPI interface used by the SD Card with
SPI.begin(SD_CARD_CLK, SD_CARD_MISO, SD_CARD_MOSI, SD_CARD_CS);

and then attempts to detect the presence of an SD Card with
SD.begin(SD_CARD_CS)

OpenWaveFile() opens the wavfile.wav file on the SD Card with
WavFile = SD.open("/wavfile.wav");

and then reads the header info on the wavefile with
WavFile.read((byte *) &WavHeader,44);

 Loop() in main.cpp

After setup() in main.cpp the main loop() takes over. This is where all the audio
sample manipulation happens and where the I2S interface is engaged to move the
processed samples to the DMA buffers and then on to the DAC output.

void loop()
{
 //Test of LillyGo Taudio SD Card playback
 //leave the main loop dedicated only to the I2S audio task

 byte txbuf[SAMPLES_BUFFER_SIZE]; //transmit buffer
 float rxl, rxr, txl, txr; //left/right samples, processed as floats

 myPedal->init();
 taskSetup();

 while(1) //signal processing loop
 {
 //gather 1024 input samples into Samples buffer from SD wavfile,
 mySDplay.ReadFile(mySDplay.Samples);

//process samples one at a time from Samples[]
 for (int i=0; i<(SAMPLES_BUFFER_SIZE); i+=4)
 {
 rxl = (float)((int16_t)(mySDplay.Samples[i+1] << 8) |

mySDplay.Samples[i]); // Left sample float
 rxr = (float)((int16_t)(mySDplay.Samples[i+3] << 8) |

mySDplay.Samples[i+2]); // Right sample float

 //~~~
 //~~~~~~~~~~ SIGNAL PROCESSING ~~~~~~~~~~~~~~~
 //~~~

32

 txl = myPedal->gain * myPedal->gainRange * rxl;
 txr = myPedal->gain * myPedal->gainRange * rxr;

 //~~~
 //~~~

 txbuf[i] = ((int16_t) txl) & 0xff ; // Left sample loaded
 txbuf[i+1] = ((int16_t) txl) >> 8;
 txbuf[i+2] = ((int16_t) txr) & 0xff ; // Right sample loaded
 txbuf[i+3] = ((int16_t) txr) >> 8;

 } // End of for loop

 // play processed transmit buffer by loading txbuf into DMA memory
 mySDplay.FillI2SBuffer(txbuf);

 } // End of while(1) loop

} // End of Main Loop

The actual sample processing happens within an inner while(1) loop. Before that,
several variables used in the processing are declared -- a transmit buffer array and
some receive/transmit left/right sample floats. External controllers are then set up by
init() from the file set_module.cpp with myPedal->init(), and controller polling
tasks are started up with taskSetup() from the file task.cpp.

The sample processing while(1) loop has five steps that are repeated:

1. mySDplay.ReadFile(mySDplay.Samples);

This function from the SDplay Class will collect 1024
(SAMPLES_BUFFER_SIZE) bytes from the SD Card and store them in the
Samples[] array.

2. rxl = (float)((int16_t)(mySDplay.Samples[i+1] << 8) |
 mySDplay.Samples[i]); // Left sample float

 rxr = (float)((int16_t)(mySDplay.Samples[i+3] << 8) |
 mySDplay.Samples[i+2]); // Right sample float

A for() loop will now begin pulling out audio samples one at a time for
processing. In particular, it will pull out one 16-bit left channel audio sample
and one 16-bit right channel audio sample from the Samples[] buffer.
However, the sample data from the SD Card is not ready-made for processing.
It is sequenced in a particular format: left channel low byte, left channel high
byte, right channel low byte, right channel high byte.

The above code converts the two left channel bytes into a 16-bit sample by

33

shifting the high byte by 8-bits and OR'ing it with the low byte. The result is
then typecast to a float. The same is done for the right channel. After pulling
these four bytes from Samples[], the for() loop index is incremented by 4 to
prepare for getting the next stereo pair of samples, but first, this current pair
must be processed.

3. txl = myPedal->gain * myPedal->gainRange * rxl;
 txr = myPedal->gain * myPedal->gainRange * rxr;

The processing shown here is simple volume control. The variable "gain" varies
between 0 and 1, set by one "up volume" pushbutton and one "down volume"
pushbutton. The variable "gainRange" is set at 2. These two variables are
created in the file set_module.cpp. Such a simple effects example is mainly for
demonstration. Many more interesting effects can certainly be applied to the SD
playback signal and this is where it happens.

4. txbuf[i] = ((int16_t) txl) & 0xff ;
 txbuf[i+1] = ((int16_t) txl) >> 8;
 txbuf[i+2] = ((int16_t) txr) & 0xff ;
 txbuf[i+3] = ((int16_t) txr) >> 8;

The two processed left/right float samples must be converted back into 4 bytes
and loaded, in the proper sequence, into a transmit buffer defined to hold byte-
sized elements. This is accomplished with some binary processing (shifting and
AND'ing) on the 16-bit left and right samples after typecasting the floats back
into 16-bit samples.

The for() loop then repeats steps 1 through 4 for the next 4 bytes of sample
data, until all 1024 (SAMPLES_BUFFER_SIZE) bytes have been processed
and the txbuf[] is full.

5. mySDplay.FillI2SBuffer(txbuf);

This is another SDplay Class function. It loads the 1024 bytes from the txbuf
buffer into the DMA buffers that feed the DAC outputs, using a special
i2s_write() function.

Processing these 1024 byte "frames" of sample data continues within the
while() loop until the entire wavfile has been played.

 ReadFile()

34

void SDplay::ReadFile(byte* Samples)
//Always fills the the Samples[] buffer with SAMPLES_BUFFER_SIZE bytes
{
 //check for end of wavfile
 if(BytesReadSoFar + SAMPLES_BUFFER_SIZE > WavHeader.DataSize)
 {

//what's left at end of wav file
 BytesToRead=WavHeader.DataSize-BytesReadSoFar;

//partial fill of Samples[] buffer
 WavFile.read(Samples,BytesToRead);

//pack remaining bytes with silent samples
 for(int i=BytesToRead; i<SAMPLES_BUFFER_SIZE; i++)

Samples[i]=0;

 WavFile.seek(44); //reset to start of WavFile
 BytesReadSoFar=0;
 }
 else
 {

//fill Samples[] buffer with SAMPLES_BUFFER_SIZE bytes from WavFile
 WavFile.read(Samples,SAMPLES_BUFFER_SIZE);

//adjust index into WavFile
 BytesReadSoFar+=SAMPLES_BUFFER_SIZE;
 }
}

ReadFile() is an SDplay Class method placed at the start of the signal processing
while(1) loop. Its job is to collect a "frame" of samples to process. Basically it fills
the Samples[] buffer with the next 1024 bytes from the wavfile on the CD Card using
the FS read function WavFile.read(Samples,BytesToRead); while also updating the
index variable BytesReadSoFar to keep track of the playback position in the wavfile.

This is complicated a bit by what happens at the end of the wavfile. More than likely
there won't be a full 1024 bytes left at the end of the file. In that case we read what
bytes are there and then fill in the remaining 1024 bytes with zeroes. This will result in
moment of silence at the end of the wavfile that will last no more than about 10 msec,
an imperceptible amount of time.

Notice also that at the end of the file we just rewind and repeat the playback. Other FS
functions such as seek() and openNextFile() suggest possible alternatives to just
repeating the playback.

 FillI2SBuffer()

void SDplay::FillI2SBuffer(byte* Samples)
{
 // Writes SAMPLES_BUFFER_SIZE bytes to DAC DMA buffers.
 // Repeat until you know they've all been written.

35

 done = false; //initial condition to start an i2s_write

 while(!done)
 {
 // Set address to next byte in buffer to send out
 DataPtr=Samples+BufferIdx;

 // This is amount to send (total less what we've already sent)
 BytesToSend=SAMPLES_BUFFER_SIZE-BufferIdx;

 // Send to DAC DMA, 1 RTOS tick time to complete
 i2s_write(i2s_port_t I2S_NUM,DataPtr,BytesToSend,&BytesWritten,1);

 // increase by number of bytes actually written
 BufferIdx+=BytesWritten;

 if(BufferIdx>=SAMPLES_BUFFER_SIZE)
 {

// Sent out all SAMPLES_BUFFER_SIZE bytes in Samples[].
// Reset index and set done to indicate this.

 BufferIdx=0;
 done=true;
 }
 else
 done=false; // DAC DMA was full with more data to send
 }
}

FillI2SBuffer() is an SDplay Class method placed at the end of the signal processing
while(1) loop. Its job is to load a frame of samples from the transmit buffer to the I2S
DMA buffers.

In the case of processing signals from the Codec Input, only the i2s_write() function
is needed here because samples coming in from the ADCs are going out to the DACs at
the same sampling rate. Here, however, the input samples are probably coming from
the SD Card at a much higher rate than the sample rate driving the DACs, risking a pile
up of samples at the DMA buffers. Luckily, the i2s_write() function within
FillI2SBuffer() can detect when the DMA buffer is full, stop the transfer, and indicate
with BytesWritten how many bytes were successfully written to the DMA buffer. The
FillI2SBuffer() was coded to deal with full DMA buffers. It will keep coming back
to write more into the buffer until all 1024 bytes have been loaded.

36

The Set_Codec.cpp File

#include "set_codec.h"

// declaration of codec, an instance of Codec
 Codec codec;

//Some functions built to set Codec registers

 void codec_sets() //to be executed in main.cpp
 {

 codec.addaCfg(1,0); // Enable adc and dac (DAC 1/0, ADC 1,0)
 codec.inputCfg(0,0,0); // Input config, (MIC 1/0, LINE 1/0, AUX 1/0)
 codec.outputCfg(1,0); // Output MIXER config (DAC 1/0, INPUT BYPASS 1/0)
 codec.sampleRate(); // SAMPLE_RATE khz = 48, 32, 24, 16, 12, 8
 codec.hpVolSet(40,40); // Headphone volume 0 TO 63, (LEFT, RIGHT)
 codec.i2sCfg(2,0); // I2S format MSB, 16Bit
 codec.loopback(0); // Input to Output when 1, no Bypass when 0

 };

This file's set_codec.h function selects several codec register "set" functions from
codec.cpp to be executed from setup() in main.cpp. Our application here uses audio
input from the SD Card Reader, not the ADC inputs on the Codec, therefore we want
to disable any ADC inputs using the above addaCfg() and inputCfg() codec set
functions. The comments explain how this is done. Zero to disable, 1 to enable a
parameter.

Misc Problems

After uploading the program the gain on the wavfile will probably be too high. You
will hear the audio breaking up on peaks. Press the "gain" down pushbutton several
times to see the NeoPixels turn from red to blue and the audio "crackling" go away. A
more permanent solution is to set the "gainRange" lower.

With the SD Card audio running, program uploads can fail. The error is described as:

A fatal error occurred: Serial data stream stopped: Possible serial noise
or corruption.

Failed to communicate with the flash chip, read/write operations will fail.
Try checking the chip connections or removing any other hardware connected
to IOs.

37

I suspect that the problem is the LillyGo TAudio's use of GPIO 02 in the SD SPI
interface. GPIO 02 is one of several ESP32 pins that does double duty with some type
of startup job. The upload does succeed after several attempts.

38

