ESP32 4-Voice
Synthesizer

with emulation of the AY Arcade Game Sound Chip

John Talbert - November 2021

=]

-
-

AL LI ALY

2€ SE ¥E NA dA WIthe B

SEFESSSETEE o

DD

2 3

Boot

fied

J
AS QW2 €0 ZQ €T ONO 2T b7 ¢

Y

e i!!!u sl
——

-

.

Table of Contents

the Synth

the Board

the Box 6

the Programming 16
Basic 18
LED PWM 23
MIDI Input and Output 28
DAC Waveforms 33
Touch Switch 37
PWM Noise Voice 40
Timer Interrupt Voices 46
Timer Voices with 2 Cores 52
Random Voices 58
SPIFFS File System 65

AY Arcade Playback 71

the Synth

This is a four-voice programmable synthesizer built with the ESP32
DevKit. The four voices are built from signals generated on 4 ESP32
output pins connected to 4 multiplying MCP4921 DAC chips used for
volume control. Two of the pins can be programmed as 8-bit DACs to
produce any type of waveform. All four can be programmed to produce
square waves and PWM pulse waves. If the pulse width is fed random
values the pulse wave becomes pitched noise.

Two additional ESP32 pins are connected to onboard circuits for
MIDI INPUT and OUTPUT.

Among its many applications, the Synth can be programmed to
simulate an AY Arcade Game Sound chip from the 70’s and play back old
AY sound files still available on the web.

the Board

A PCB board was designed using the free, open source, KiCad app
(www.kicad.org) and Dr. Peter Dalmaris” very useful book and tutorial
“KiCad Like A Pro” (https:/ /techexplorations.com).

U6 6N137 us ESP32-WROOM DEVKIT BOARD

38 pin
22mm or 25mm pin widths
J4

MIDI IN/OUT

MCP4921 DAC

N
/7 \'\,«
AY Arcade Game |o [o| | use connection
4 Voice Synthesizer

MCP4921 DAC

MIDI IR
MID! INS

MiDI 0UTs

NiIDI OUTG E

VP/EN
34/VN ¢
32/35 0 ¢
X1/33 ¢
V1/X2
V3/V2
MIX V4

Haqie] uyor Aq paubisag
43Z15aYjuhs 3210\ 4 ZEJSI

~ ESP32-DEVKITC-32D

http://www.kicad.org
https://techexplorations.com

The central device on the PCB is the ESP32-DEVKITC-32D
board. This is a 39 pin board with a USB connection to both
program and power the ESP32 microprocessor. There are several
versions of this board. The WROOM version has pins 30 and 31
(I016 and 17) available as TX2 and RX2 for MIDI Input and
Output.. The PCB board has an extra 19 pin header to
accommodate two different versions of the DEVKIT with pin
widths of 22mm or 25mm.

Four MCP4921-EP Multiplying DAC chips provide volume
control. Any signal connected to the VrefA input of the Multiplying
DAC chip can be volume controlled. The ESP32 pins chosen for this
are 1025, 1026, 1012 and 1013 (pins 9, 10, 13, 15). All four pins can
be programmed as digital outputs that produce square wave or
pulse type signal outputs. 1025 and 1026 can also be programmed
as 8-bit DACs and, as such, can output any waveform shape.

The volume of the connected signal on each of these four
multiplying DAC chips is controlled through an I12C interface on the
DAC chips, set up using ESP32 pins 1022 and 1021 (pins 22 and 25)
programmed as I2C_SCL and I2C_SDA and connected to all four
DAC chips. The individual DAC chips are enabled one at a time to
recognized the common I2C signals through four ESP32 lines (LOW
enabled) 1023, 1019, 1018, and 104 (pins 23, 19, 18, and 32).

The 4 volume controlled outputs from these 4 DAC chips are
connected to the J1 output pin header both individually through a
1k series resistor as Voice 1, 2, 3, and 4, and added together in a 4k7
resistor mixer as MIX.

I g

I k]

/1Pl |

(#T70T—-T-0T'T'G) P31y "¥°0"3 PeIy

ZA A3y |

ST-17-120C *33ed 7 ARG

ZEdST UR YyM Jazjsayjuhs aweo apeyaly AS ayj Bupeasasy :apul

425°ZEdSITAY 2114
/ 1133ys

yaqie] uyor Aq ubisap

IGIW 40} 9TOI PUe LT0I 4O 35N SMOJIe ZE—WOOYM Auo
SZE-1MA3Q Z£dST uid—6g

SIIpIM PIROQ ZEJST OM} JO BDI0YD 10y

.WW 13peay uid 6T

0/1 asodindpnw eix3

TOY¥INOD IWNTOA ¥04
SdIHD JvQ ONIATAILINIW

AMdAND

AMJAND

ZX pue TX
[6T A+
T et Z0Va pue TOvq osie ae
) ZA puE TA
Tor 9ty AG+ pasjop 2] I)
N EA V14N £ 19572
AT 4MJAND > Fvas-Hzl
ST <A Xge P12 ASDA g7 e
7T 2T X7z 0as) [grgry YMAND _q_
we| JFE IR ST01 Xgg MMM, MMM T LTy ASTE+
2| Joran T 5y 79Ty
o T 1A X 201 101 [oA
g amg pieoquo
X T8 sHonoL 031 ome preeq <ol gz 00! TANS Iy dMdAND
9 17 eHonoL Sa3Vdo pasn o ol 210 [o1y AMJAND
8| T9 ndosn3s Zxy | o 90l g 1y
S| T5cuosnas 50l X1 ool J e S 3~ RN ~
2| 7 zuosnas 5ol 9201 577 63 >
T T T¥0sN3s exs—az] & 5201 [—5—1p d1-TZGndIN a
7| Tz tasay sy Iz | 61 €01 g gHINOL gasion AL [T
=T I\ 9z | YN «ol 7 6HINOL s £ 19572
ASE+ vaszr_ ez | B S0l Tg HYOSNIS 7 v4sZl
X:’N oaxy +©€01 3 CYOSNIS -
€T #3210\ Xz 0axL NATHOSN3S [— ZHOSNIS
TT Zadlop qvm\UNf‘NN zzol dAT4OSN3S T TYOSNIS Acer
6 ¢X NSy T | =@ Mz 13534
7 8HINOL oz sano o [
6HONOL S #40SN3S AMdAND — —
£YOSN3S T ZY0SN3S EETUNI0TERdSS YMAAND yugano
TYOSN3S T 13534 WIAAM ASS+
UaATTPPOLOXZO U0 A o |
i
IVIAMd < =
d3-TZ64dON $ 0 Xrg
zooro I} 0 8 Oon . 2BlTuws
AL 5 JMM T 135732
HOXTOTuN0) — v vasTz!
e %
ACE+
, ASTE+ 4MdOND AMdAND
\ by e
zl
v %-, o (4%
a ~ .
Ta N ! YMdAND 163
_ NI IQIN
#0XTQ uu0d S NITAR Raﬂ:za £ 125702l
zr .
S LNO 1IN o1 7 vas
XIN
% LNO IQIN ﬂ; 4 Ty Aot
ASE+
S 7 z

MICROCHIP

MCP4921/4922

12-Bit DAC with SPI™ Interface

Features

+ 12-Bit Resolution

+ +0.2 LSB DNL (typ)

+ +2 LSB INL (typ)

+ Single or Dual Channel

+ Rail-to-Rail Output

+ SPI™ Interface with 20 MHz Clock Support

- Simultaneous Latching of the Dual DACs w/LDAC
+ Fast Settling Time of 4.5 uys

+ Selectable Unity or 2x Gain Output

+ 450 kHz Multiplier Mode

+ External Vggg Input

+ 2.7V to 5.5V Single-Supply Operation

+ Extended Temperature Range: -40°C to +125°C

Applications

+ Set Point or Offset Trimming

+ Sensor Calibration

+ Digitally-Controlled Multiplier/Divider

+ Portable Instrumentation (Battery-Powered)
+ Motor Feedback Loop Control

Block Diagram

CS sSDI SCK LDAC

KM X X X
r— - — — - — — 9
P Vop
| i - ower-on
nterface Logic Roset lL{g
A 4 v] AVgg
Input

|
|
| Input
|
|

Register A |
DAC, DACp |
Register Register |

Vaer

| l—o/ v v | Vrer
A " Str B
% -&» ohcy | | oAcs <—r/\1m

| Buffer v

|| Gain >

| Logic

! J

s

L o— — — —
Vouta —

Description

The Microchip Technology Inc. MCP492X are 2.7 —

5.5V, low-power, low DNL, 12-Bit Digital-to-Analog Con-
verters (DACs) with optional 2x buffered output and SPI
interface.

The MCP492X are DACs that provide high accuracy
and low noise performance for industrial applications
where calibration or compensation of signals (such as
temperature, pressure and humidity) are required.
The MCP492X are available in the extended tempera-
ture range and PDIP, SOIC, MSOP and TSSOP
packages.

The MCP492X devices utilize a resistive string archi-
tecture, with its inherent advantages of low DNL error,
low ratio metric temperature coefficient and fast settling
time. These devices are specified over the extended
temperature range. The MCP492X include double-
buffered inputs, allowing simultaneous updates using
the LDAC pin. These devices also incorporate a
Power-On Reset (POR) circuit to ensure reliable
power-up.

Package Types

8-Pin PDIP, SOIC, MSOP

d

126vdON

Voo [1] 14 Vourta
NC [2] VRera
Cs [3] E AVgg

SCK [4] 2 1] Vages
sDI [5] § Vours
NC (8] [9] SHDN
NC [7] 8] LDAC

@ 2007 Microchip Technology Inc.

DS21897B-page 1

Two ESP32 pins are used to create a MIDI INPUT and MIDI
OUTPUT. 1017 (pin 30) is TX2 used for MIDI Output, and 1016
(pin 31) is RX2 used for MIDI Input. Only a 6N137 opto-isolator
chip and a few resistors are needed to transform TX2 and RX2 into
MIDI In and MIDI Out, all of which is placed in the upper corner of
the PCB board along with a 4-pin J2 header.]2 has two connections
each for standard 5-pin DIN MIDI IN and MIDI OUT sockets.

Note that only the WROOM ESP32 makes 1017 and 1016
available for TX2 and RX2. The WROVER does not.

The J1 14-pin header is provided to carry the four voice
outputs and the MIX output. This J1 header also carries other
ESP32 connections, described as follows.

There are 4 sensor input pins on J1 from the ESP32 —
Sensor_VP, Sensor_VN, 1032 and 1035 (pins 3, 4, 5, and 6). These
can be connected to potentiometers wired between Ground and
3.3volts. Itis good practice to put a 470 ohm resistor in series with
the potentiometer wiper before connecting it to the ESP32 input pin.
This will limit the current if the input pin is mistakenly
programmed as an output.

3.3v
+ 470Q
10k % 5
linear YYY

——= O.1uF

Two more pins are provided on J1 for switches — 1032 and
1033 (pins7 and 8). An internal pull-up resistor can be
programmed for the switch action. One side of the switch is
connected to the ESP32 pin while the other side is connected to
ground through a 270 ohm resistor, again, to protect against an
input pin mistakenly programmed as an output and shorting to
ground.

These two switch pins can also be programmed as Touch
sensors T9 and T8. For Touch sensor applications the pins are
simply connected to any metallic object such as a screw insulated
from the metal chassis.

Finally, J1 has two extra pin connections labeled X1 and X2
connected to 1027 and 1014 (pins 11 and 12) through series 1k
resistors. These two connections can be configured as two extra
digital voices, sensor inputs, or whatever the user determines.

Outside of the J1 connector, IO5 and 1015 are provided
individual pads for optional uses such as LED indicator lights.
Note that some DEVKIT boards set up a blue LED on 102 (pin 34).

That puts to use all the available I/O pins on the ESP32. Itis
recommended that you don’t use pins SD2, SD3, CMS, 100, 102,
SD1, SD0 and CLK (pins 16, 17, 18, 33, 34, 36, 37, 38) as those pins
have internal uses such as flash memory and startup.

One more 4-pin header,]3, is provided on the PCB board to
carry power connections 3.3 volts, 5 volts, and Ground. These can
be used to power external devices such as Potentiometers, Switches,
LEDs, and other sensors.

Here is the AY ESP32 Synthesizer built into a chassis. All 4
voices from the PCB are used along with the two extra X1 and X2
pins for a total of six. Volume controls are provided for all six
voices at the bottom of the box. A switch is put on one of the ESP32
DAC voices to allow a choice between the DAC and any external
signal to be added to the mix. Output jacks are provided for each of
the ESP32 DAC signal pins (before volume control).

A special second PCB board was designed to mix the 6
unipolar signals and to add optional modulation. The final
modulated mix is provided on a mini-jack at the center of the box.

A modulator input jack allows a choice between an external
modulator signal (such as one of the ESP32 DAC outputs) and an
internal modulator (normalled on the jack switch). The internally
generated modulator signal can be switched between pulse and
triangle type waveforms with controls on its pulse width and
frequency. A control for modulation amount determines how much,
if any, modulation is applied to the final mix.

At the top of the box are the ESP32 sensor controls — four
potentiometer control voltages and two pushbutton switches. It
was easy to add Touch controllers to the two switches by just
connecting the switch contacts to screws mounted next to each
switch. These controls can be programmed to control the playback
of the 6 voices in various ways.

Each switch also incorporates an LED which were connected

to ESP32 pins 105 and 1015 along with a 1000 ohm current limiting
resistor to ground.

11

An opening at the front of the box allows access to the ESP32
board’s USB cable connection. The USB cable provides power for
the entire box and is used for programming the ESP32. Holes were
drilled to allow access to a Reset Switch and a Boot Switch on either
side of the USB jack. The eraser end of a pencil can be used to press
either switch on the DEVKIT board which is sometimes needed
while programming the micro.

Also mounted at either end of the front opening are the MIDI
INPUT and MIDI OUTPUT 5-pin DIN jacks.

Quite a few useful features were built into this box, but a
much simpler version is also possible. It would only require the
main PCB ESP32 DEVKIT with access to its USB jack, a signal
output jack connected to ground and the MIX pin, and a few sensor
controllers like a pot and switch.

12

13

14

ESP32 Programming

The ESP32

The ESP32 microprocessor is like a supercharged Arduino. It
has a 32-bit processor, and can be programmed with the Arduino
IDE app. The ESP32 is compatible with over 90% of the Arduino
core programming language and many of its libraries. However, it
has expanded capabilities such as wireless WiFi and Bluetooth. Its
clock speed is 80MHz/240MHz compared with 48MHz for the
Arduino MKR. The flash memory for user programs is 4MB/8MB
compared to 256KB for the Arduino MKR. The SRAM memory for
user variables is 520KB compared to 32KB for the MKR. The ESP32
processor is dual-core, enabling it to run two program threads
simultaneously. Its peripherals can include up to 43 GPIOs, 1 full-
speed USB OTG interface, SPJ, 125, UART, 12C, LED PWM, LCD
interface, camera interface, ADC, DAC, touch sensors.

The Arduino programming package for the ESP32 has been
expanded to include many useful features that were only accessible
in the Arduino by hacking into its internal registers. This includes
PWM setup with pulse width and clock speeds; timers with clock
setup, mode and interrupt; touch (capacitive) sensor setups; ADC
setups with resolution, width and speed.

Espressif is the company that develops the ESP32
(www.espressif.com). They provide a programming package
“ESP32 for Arduino” on Github (https:/ /github.com/espressif/
arduino-esp32). Documentation and instructions for installing this
package on your Arduino IDE app can be found at this Github site
(https:/ /docs.espressif.com / projects / arduino-esp32 /en /latest /
installing.html).

16

http://www.espressif.com
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html
https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html
https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html

ESP32 Help

Given its expanded capabilities, programming the ESP32 can
be difficult even given the Arduino's familiar IDE environment.
Here are several sources for tutorials and books on the ESP32.

Espressif https://www.espressif.com/en/products/modules ESP32 Developer
Tech Explorations https://techexplorations.com/pc/esp32/ Video Tutorials

Random Nerd https://randomnerdtutorials.com/projects-esp32/ Tutorials, Books

Books https://bookauthority.org/books/best-esp32-books

The following Arduino IDE program sketches will illustrate
how to program many of the special features available on the ESP32
using the AY Synthesizer Box shown above. They will culminate in
a full blown emulation of the AY Arcade Game Sound Chip from
the 70s.

17

Basic

This first sketch can act as a starting template for subsequent
sketches as it sets up all the constants and variables needed for the
pots, switches, LEDs and the multiplying DACs.

Note that the ESP32 pin constants SDA, SCL, DAC1, and
DAC2 have already been defined in the Espressif ESP32 Arduino
package (if you try to set them up yourself, you will get the error
“redefinition of const”). Our first example of the many new and
convenient features available from the Espressif ESP32 package.

The MCP_DAC Library by Rob Tillaart is used to implement
the I2C protocol used for the MCP4921 Multiplyer DACs. This can
be installed by downloading it from the Github site https:/github.com/
RobTillaartyMCP DAC or using the Arduino IDE’s Tools/ManageLibrary
Menu.

To test the four multiplying DAC chips, tones are set up on the
four main voices with a pot assigned to control each voice’s volume.
The Arduino Monitor screen will display a running readout of the 4
pot and 2 switch values.

18

https://github.com/RobTillaart/MCP_DAC
https://github.com/RobTillaart/MCP_DAC

/*
ESP32 AY_Synth Basic Setup
*/

//already declared in ESP32 library
//static const uint8_t SCL = 22;
//static const uint8_t SDA = 21;

#include "MCP_DAC.h"

MCP4921 myAYDAC1(SDA, SCL);
MCP4921 myAYDAC2(SDA, SCL);
MCP4921 myAYDAC3(SDA, SCL);
MCP4921 myAYDAC4(SDA, SCL);

//Serial Lines to MCP4921 Multiplyer DACs

//MCP_DAC Library by Rob Tillaart

/]~ CONSTANTS/VARIALBES ~~~~~m~mmmmmmm
// GIOP Pin Assignments

static const uint8_t POT1 = 36;
static const uint8_t POT2 = 39;
static const uint8_t POT3 = 34;
static const uint8_t POT4 = 35;

short pot1;
short pot2;
short pot3;
short pot4;

static const uint8_t SWITCH1 = 33;
static const uint8_t SWITCH2 = 32;

bool switch1;
bool switch2;

//already declared in ESP32 library
//static const uint8_t DAC1 = 25;
//static const uint8_t DAC2 = 26;

static const uint8_t V1 = 25;
static const uint8_t V2 = 26;
static const uint8_t V3 = 12;
static const uint8_t V4 = 13;

static const uint8_t X1 = 27;
static const uint8_t X2 = 14

static const uint8_t CS_V1 = 23;
static const uint8_t CS_V2 =19;
static const uint8_t CS_V3 = 18;
static const uint8_t CS_V4 = 4;

static const uint8_t MIDI_TX2 = 17;
static const uint8_t MIDI_RX2 = 16;

//Also Touch Sensor

/Noice Pins to MCP4921 Multiplyer DACs

//Chip Select to MCP4921 Multiplyer DACs

//MIDI I/O, also LED on MIDI Out
//only on WROOM, won't work on WROVER ESP32s

19

static const uint8_t LED1 = 5;
static const uint8_t LED2 = 15;
static const uint8_t LED3 = 2; //Blue LED on 32S boards

void setup() {

myAYDAC1.begin(CS_
myAYDAC2.begin(CS_
myAYDACS3.begin(CS_
myAYDACA4.begin(CS_

// initialize Switches with pullup resistor
pinMode(SWITCH1, INPUT_PULLUP);
pinMode(SWITCH2, INPUT_PULLUP);

//initialize DAC chip selects, LOW select, unselect all
pinMode(CS_V1, OUTPUT);

digitalWrite(CS_V1, HIGH);

pinMode(CS_V2, OUTPUT);

digitalWrite(CS_V2, HIGH);

pinMode(CS_V3, OUTPUT);

digitalWrite(CS_V3, HIGH);

pinMode(CS_V4, OUTPUT);

digitalWrite(CS_V4, HIGH);

//initialize 4 digital voice inputs to Multiplyer DACs
pinMode(V1, OUTPUT);

digitalWrite(V1, HIGH);

pinMode(V2, OUTPUT);

digitalWrite(V2, HIGH);

pinMode(V3, OUTPUT);

digitalWrite(V3, HIGH);

pinMode(V4, OUTPUT);

digitalWrite(V4, HIGH);

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);

digitalWrite(LED3, HIGH); //flash board's blue LED
delay(500);

digitalWrite(LED3, LOW);

delay(500);

digitalWrite(LED3, HIGH);

delay(500);

digitalWrite(LED3, LOW);

Serial.begin(115200);

20

void loop() {
loadSensors();

//setup pots as voice volume controls
myAYDAC1.analogWrite(pot1
myAYDAC2.analogWrite(pot2);

(pot1)
(pot2)
myAYDAC3.analogWrite(pot3);
myAYDACA4.analogWrite(pot4)

//create a tone in all 4 voices

digitalWrite(V1, LOW)
digitalWrite(V2, LOW);
digitalWrite(V3, LOW);
digitalWrite(V4, LOW)

delayMicroseconds(100);

digitalWrite(V1, HIGH)
digitalWrite(V2, HIGH);
digitalWrite(V3, HIGH);
digitalWrite(V4, HIGH)

delayMicroseconds(10);
//print pot and switch values

Serial.print("pot1 = ");
Serial.print(pot1);
Serial.print(" pot2 =");
Serial.print(pot2);
Serial.print(" pot3 =");
Serial.print(pot3);
Serial.print(" pot4 =");
Serial.print(pot4);

Serial.print(" ");
Serial.print(" switches ");

Serial.print(switch1);
Serial.printin(switch?2);

~aa s~~~ ~

21

void loadSensors(){ //load all current sensor values
pot1 = analogRead(POT1);
pot2 = analogRead(POT2);
pot3 = analogRead(POT3);
pot4 = analogRead(POT4);

switch1 = digitalRead(SWITCH1);
switch2 = digitalRead(SWITCH2);

22

LED PWM

This program uses special ESP32 PWM functions to control the
brightness of an LED using either a switch or a pot.

ledcSetup(ledChannelA, freq, resolutionl); // in Setup
ledcAttachPin(LED1, ledChannelA); /[in Setup
ledcWrite(ledChannel A, dutyCycleA); /[in Main Loop

O D D O O D o D o 0 o 0 0 0 0 D o D D D

/ *
ESP32 AY_Synth
Using the LEDs connected to GPIO 2, 5, and 15

PWM control of LED brightness from a switch or pot

*/
[] e e CONSTANTS/ VARIALBES ~ e i
// GIOP Pin Assignments

static const uint8_t POT1 = 36;
static const uint8_t POT2 = 39;
static const uint8_t POT3 = 34;
static const uint8_t POT4 = 35;

short potl;
short pot2;
short pot3;
short pot4;

static const uint8_t SWITCH1 = 33; //Also Touch Sensor
static const uint8_t SWITCH2 = 32;

bool switchl;
bool switch2;

23

/ / already declared in ESP32 library
/ [static const uint8_t DAC1 = 25;
/ [static const uint8_t DAC2 = 26;

static const uint8_t V1 =25; //Voice Pins to MCP4921 Multiplyer DACs
static const uint8_t V2 = 26;
static const uint8_t V3 =12;
static const uint8 t V4 =13;

static const uint8_t X1 = 27;
static const uint8_t X2 = 14;

static const uint8_t CS_V1 =23; //Chip Select to MCP4921 Multiplyer DACs
static const uint8_t CS_V2 =19;

static const uint8_t CS_V3 =18;

static const uint8_t CS_V4 =4;

static const uint8_t MIDI TX2 =17; //MIDI1/O, also LED on MIDI Out
static const uint8_t MIDI_RX2 = 16; //only on WROOM, won't work on WROVER
ESP32s

static const uint8_t LED1 = 5;
static const uint8 t LED2 = 15;
static const uint8_t LED3 = 2; //Blue LED on 32S boards

/ | setting PWM properties
const int freq = 5000;

const int ledChannelA = 0;
const int ledChannelB = 1;
const int resolutionl = §;
const int resolution2 = 12;

int dutyCycleA = 0;
int dutyCycleB = 0;

24

void setup() {

/ / initialize Switches with pullup resistor
pinMode(SWITCHl, INPUT_PULLUP);
pinMode(SWITCHZ, INPUT _PULLUP);

/ /initialize DAC chip selects, LOW select, unselect all
pinMode(CS_V1, OUTPUT);
digitalWrite(CS_V1, HIGH);
pinMode(CS_V2, OUTPUT);
digital Write(CS_V2, HIGH);
pinMode(CS_V3, OUTPUT);
digital Write(CS_V3, HIGH);
pinMode(CS_V4, OUTPUT);
digitalWrite(CS_V4, HIGH);

/ /initialize 4 digital voice inputs to Multiplyer DACs
pinMode(V1, OUTPUT);
digitalWrite(V1, HIGH);
pinMode(V2, OUTPUT);
digitalWrite(V2, HIGH);
pinMode(V3, OUTPUT);
digitalWrite(V3, HIGH);
pinMode(V4, OUTPUT);
digitalWrite(V4, HIGH);

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);

/| configure LED PWM functionalitites
ledcSetup(ledChannelA, freq, resolutionl); // 0, 5000, 8 assigned above
ledcSetup(ledChannelB, freq, resolution2); // 1, 5000, 12 assigned above

/| attach the channel to the GPIO to be controlled
ledcAttachPin(LED1, ledChannelA);
ledcAttachPin(LED2, ledChannelB);

25

digitalWrite(LED3, HIGH); //flash board's blue LED
delay(500);

digital Write(LED3, LOW);

delay(500);

digital Write(LED3, HIGH);

delay(500);

digitalWrite(LED3, LOW);

void loop() {
loadSensors();

if (Iswitch1) {
/ /| increase the LED brightness or simply turn on with digitWrite(LED1, HIGH)
if(dutyCycleA < 255){
/| changing the LED brightness with PWM
dutyCycleA++;
ledcWrite(ledChannel A, dutyCycleA);
}
J

else {
/| decrease the LED brightness or simply turn off with digitalWrite(LED1, LOW)
if(dutyCycleA > 0){
/| changing the LED brightness with PWM
dutyCycleA--;
ledcWrite(ledChannel A, dutyCycleA);

ledcWrite(ledChannelB, potl);
delay(20);
}

26

void loadSensors(){ // load all current sensor values
potl = analogRead(POT1);
pot2 = analogRead(POT2);
pot3 = analogRead(POT3);
potd = analogRead(POT4);

switchl = digitalRead(SWITCH1);
switch2 = digitalRead(SWITCH?2);

~N~~S S~~~ A~ A~~~

27

MIDI Input and Output

MIDI Input and Output can be set up on the ESP32 RX2 and
TX2 pins with the following program lines:

#include <MIDIL.h>
MIDI_CREATE_INSTANCE(HardwareSerial, Serial2, MIDI);

Use the Arduino MIDI Library. Specify HardwareSerial and Serial2
which the ESP32 package will understand to be the RX2 and TX2
pins.

D R e o e e e R 2 e X X)

/ *
MIDI INPUT and OUTPUT tested with a MIDI input CallBack Function
On each NOTE On message received,
2 extra arpeggiated notes will be played.
Slider 1 sets the playback speed.
Slider 2 sets the note spread
Switch 1 plays random notes at speed set by Slider 4.
*/
/1
/] CONSTANTS and Variables
] e P P P P PP PP PP
/1

/ /On an ESP32 WROOM. MIDI set up on Serial2 --> RX2 and TX2 on pins 16 and 17.

tinclude <MIDIL.h> // version 4.x.x
MIDI_CREATE_INSTANCE(HardwareSerial, Serial2, MIDI);

28

|] e CONSTANTS/ VARIALBES ~~~~nm e m e
/] GIOP Pin Assignments

static const uint8 t POT1 = 36;
static const uint8_t POT2 = 39;
static const uint8_t POT3 = 34;
static const uint8 t POT4 = 35;

short potl;
short pot2;
short pot3;
short pot4;

static const uint8_t SWITCH1 = 33; //Also Touch Sensor
static const uint8_t SWITCH2 = 32;

bool switchl;
bool switch2;

static const uint8_t CS_V1 =23; //Chip Select to MCP4921 Multiplyer DACs
static const uint8_t CS_V2 =19;

static const uint8_t CS_V3 =18;

static const uint8_t CS_V4 =4;

static const uint8_t MIDI_TX2=17; //MIDII/O
static const uint8_t MIDI_RX2 =16; //only on WROOM, won't work on WROVER
ESP32s

static const uint8_t LED1 = 5;
static const uint8_t LED2 = 15;
static const uint8_t LED3 =2; //Blue LED on 32S boards

29

/ | user created Callback Function for MIDI Input Test

void myHandleNoteOn(byte channel, byte note, byte velocity){
/ / Serial.println(" Saw a NoteOn ");
int x = (potl >>4) +20; //potl sets arpeggio speed

inty = pot2; / | pot2 sets arpeggio pitch range
y = map(y, 0, 4095, 0, 20);

delay(x);

MIDI.sendNoteOn(note +y, velocity, 1);
delay(x);

MIDLsendNoteOn(note + y + vy, velocity, 1);
delay(x);

MIDI.sendNoteOn(note, 0, 1);
MIDILsendNoteOn(note +y, 0, 1);
MIDIsendNoteOn(note +y +, 0, 1);

void setup() {
delay(1000);

MIDI.setHandleNoteOn(myHandleNoteOn); / /for Callback MIDI In Test
MIDI.begin(MIDI_CHANNEL_OMNI);

/ / initialize Switches with pullup resistor
pinMode(SWITCHl, INPUT_PULLUP);
pinMode(SWITCHZ, INPUT _PULLUP);

/ /initialize DAC chip selects, LOW select, unselect all
pinMode(CS_V1, OUTPUT);
digital Write(CS_V1, HIGH);
pinMode(CS_V2, OUTPUT);
digital Write(CS_V2, HIGH);
pinMode(CS_V3, OUTPUT);
digital Write(CS_V3, HIGH);
pinMode(CS_V4, OUTPUT);
digital Write(CS_V4, HIGH);

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);

digitalWrite(LED3, HIGH); //flash board's blue LED
delay(500);

digital Write(LED3, LOW);

delay(500);

digital Write(LED3, HIGH);

delay(500);

digitalWrite(LED3, LOW);

Serial.begin(115200);

} / /End of Setup

void loop() {

loadSensors();

/ / On MIDI.read() MIDI class will call Callback functions.

/| User created callback function myHandleNoteOn() in section before setup()

/ | and MIDI.setHandleNoteOn(myHandleNoteOn) in setup() section

MIDI.read();

if(lswitch1){ // test MIDI Output with Switch 1 and Pot 4
int note = random(30, 90);
MIDI.sendNoteOn(note, 64, 1);
delay((pot4 >>4) + 10);
MIDI.sendNoteOn(note, 0, 1);
}

} / /End of Main Loop

void loadSensors(){ // load all current sensor values
potl = analogRead(POT1);
pot2 = analogRead(POT2);
pot3 = analogRead(POT3);
potd = analogRead(POT4);

switchl = digitalRead(SWITCH1);
switch2 = digitalRead(SWITCH?2);

N~~~ A~ A~~~

32

DAC Waveforms

The ESP32 has two 8-bit DACs (Digital to Analog Converters)
on pins DAC1 and DAC2 (25 and 26). This Program
mathematically creates 3 different waveform arrays using them to
create a DAC output voice. Selection between the Waveforms
happens in the Monitor window by typing “s”, “q”, or “t” for sine
wave, square wave, or triangle wave. Pot 1 controls the frequency
with a delay function.

The special ESP32 function “dacWrite(DAC1, value)” is used
to load the 8-bit DAC.

NN AN A AN A A AN A A A A A A A A~ A~~~ A~

/ *
ESP32 DACs

* 1. ESP32 Datasheet: https:/ / www.espressif.com /sites /default/files /
documentation/esp32_datasheet_en.pdf

* 2. ESP32 has two 8-bit DACs (digital to analog converter) channels, connected to
GPIO25 (Channel 1) and GPIO26 (Channel 2)

* 3. ESP32 Arduino Core header file: https:/ / github.com /espressif /arduino-esp32/
blob/master/cores/esp32/esp32-hal-dac.h

*

* Created on March 26 2019 by Peter Dalmaris

*/
|] i CONSTANTS/ VARIALBES ~nmmmm i
// GIOP Pin Assignments

static const uint8_t POT1 = 36;
short potl;

/ / already declared in ESP32 library
/ | static const uint8_t DAC1 = 25;
/ [static const uint8_t DAC2 = 26;

33

https://www.espressif.com/sites/default/files/
https://github.com/espressif/arduino-esp32/

static const uint8_t LED1 = 5;
static const uint8 t LED2 = 15;
static const uint8_t LED3 =2; //Blue LED on 32S boards

uint8_t Triangle[360];
uint8_t Sine[360];
uint8_t Square[360];

char wave = 0;
intw =0;

void setup() {

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);
digitalWrite(LED2, HIGH);

Serial.begin(115200);
for(int deg = 0; deg < 360; deg++){

Sine[deg] = int(128 + 80 * (sin(deg*PI1/180)));
Square[deg] = int(128 + 80 * (sin(deg*PI/180)+sin(3*deg*PI/180)/3+sin(5*deg*PI/
180)/5+sin(7*deg*PI/180)/7+sin(9*deg*PI/180)/9+sin(11*deg*PI1/180)/11));
Triangle[deg] = int(128 + 80 * (sin(deg*PI/180)+1/pow(3,2)*sin(3*deg*PI/180)+1/
pow(5,2)*sin(5*deg*P1/180)+1/pow(7,2)*sin(7*deg*P1/180)+1/
pow(9,2)*sin(9*deg*P1/180)));
}

Serial.printIn("");

Serial.printIn(" Type 's' for Sinewave then Return");
Serial.println(" Type 'q' for Squarewave then Return");
Serial.printIn(" Type 't' for Triangle Waveform then Return");
Serial.printIn(" Any other character turns off the tone ");

34

void loop() {

potl = analogRead(POT1);

if (Serial.available() >0) { // is a character available?
wave = Serial.read(); /| get the character

if(wave =='s'){
Serial.printIn("Sinewave output");
w=1;

)

else if(wave =='q'){
Serial.printIn("Squarewave output");
w=2;

)

else if(wave == "t'){
Serial.println("Triangle output");
w=23;

)

else {w=0;}

}

switch (w) {
case 1:
for (int deg = 0; deg < 360; deg++){
dacWrite(DAC1, Sine[deg]);
delayMicroseconds(potl >> 6);
}
break;
case 2:
for (int deg = 0; deg < 360; deg++){
dacWrite(DAC1, Square[deg]);
delayMicroseconds(potl >> 6);

35

case 2:

for (int deg = 0; deg < 360; deg++){
dacWrite(DACI, Square[deg]);
delayMicroseconds(potl >> 6);

)

break;

case 3:

for (int deg = 0; deg < 360; deg++){
dacWrite(DACI, Triangle[deg]);
delayMicroseconds(potl >> 6);

}
break;

36

Touch Switch

Many of the ESP32 pins can act as Touch Switches. Pins I032 and 1033 have
been assigned to T9 and T8 in the ESP32 Arduino Package. The touch pins do not act as
high or low digital outputs. They put out an analog type value that changes with the
proximity of your finger to the pin, or any conductive material connected to the pin.
Screws were mounted, in our enclosure, next to the two switches and connected by
wire to each of the T9 and T8 pins. When touched the touch value hovered around 10
and when not touched the value was around 40.

The ESP32 function used to read the touch pin value is:
touchRead(T8)

In this sketch the Monitor window prints a running value of each touch pin so
you can see for yourself how the proximity of your finger affects the touchRead() value.

Two methods are demonstrated for changing the touch value into a digital on or
off. One method is to turn on or off an LED by continuously comparing the touch value
to a threshold value at 20. The second method doesn’t restrict you to constantly
watching the touchRead(). It sets up a background interrupt routine (gotTouch) that
will flash the other LED when a threshold is crossed. It uses this convenient ESP32
touch interrupt function: “gotTouch” will run when T8 goes below “threshold”.

touchAttachInterrupt(T8, gotTouch, threshold);

S N o o o N N o N N N N N N~~~ ~

/ *
ESP32 AY_Synth Touch Sensors
The 2 Switch pins are connected to chassis screws next to each switch
to accommodate the Touch Sensing function.

One Touch Sensor value is compared to a threshold value
to directly affect LED1

The second Touch Sensor uses an interrupt to flash LED2 for
a half second.

"/
37

[] e CONSTANTS/ VARIALBES ~~~mmmmm e
/] GIOP Pin Assignments

static const uint8_t SWITCH1 = 33; //Also Touch Sensor T8
static const uint8_t SWITCH2 = 32; //Also Touch Sensor T9

bool switchl;
bool switch2;

static const uint8_t LED1 = 5;
static const uint8_t LED2 = 15;
static const uint8 _t LED3 =2; //Blue LED on 32S boards

int threshold =20; // This threshhold is determined experimentally. If the touch

/ | sensor returns a value below this number, the interrupt is triggered.

bool touch8detected = false;
/ | used to communicate between the loop and the interrupt routine

void gotTouch(){ //Ideally, Interrupt Service Routines are very short, like this
touch8detected = true;

}

void setup() {

/ / initialize Switches with pullup resistor
pinMOde(SWITCHl, INPUT _PULLUP);
pinMode(SWITCHZ, INPUT_PULLUP);

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);
digitalWrite(LED3, HIGH); / /Blue Board LED

/ / ESP32 Library Function that attaches interrupt pin T8 to the service routine
touchAttachInterrupt(T8, gotTouch, threshold);

38

Serial.begin(115200);

void loop() {

Serial.print(touchRead(T8)); // get value using T8 (GPIO33)
Serial.print(" ");
Serial.println(touchRead(T9)); // get value using T9 (GPIO32)

if (touchRead(T9) <20) // The value 20 is determined experimentally
digitalWrite(LED2, HIGH);

else
digitalWrite(LED2, LOW);

if (touch8detected) //Set high by interrupt service routine
{
digitalWrite(LED1, HIGH); // blink LED1
Serial.println("Touch detected");
touch8detected = false;
delay(500);
digitalWrite(LED1, LOW);

}

[s e

/| As an Alternative: Set up Interrupt Function on Switch2, assign interrupt

/ | function, and set FALLING mode (High to Low Switch transition).

/ | attachInterrupt(digitalPinToInterrupt(SWITCH?2), switch2Function, FALLING);
[| oo

39

PWM Noise Voice

This sketch employs the same functions used to dim an LED except that here, a
PCM Pulse Waveform is created.

ledcSetup(channel, frequency, resolution)
ledcAttachPin(VoicePin, channel)
ledcWrite(channel, pulse_width)

If the Pulse Waveform is continually sent a random pulse_width, the result will
be pitched noise centered around “frequency”.

This Noise Voice will be used in the AY chip simulation. The pots here are set
up to explore all the possible parameter of this Pulse Width Modulated voice.

potl -> sets the voice pitch when Switch2 is pressed or touched

pot2 -> sets either pcm pulse width or the range of random pulse widths,
as selected by Switch1

pot3 -> sets the delay between pcm pulse width loads

pot4 -> sets the volume of the PCM Voice4

A D D D D D o o o

/ *
ESP32 AY_Synth Setup

A pitched noise PCM Voice is created by loading its pulse width with random values.
PCM library functions are available for ESP32. They are labeled as LED functions

used to
control LED brightness, but here they will be used to create an audio voice.

potl -> sets the voice pitch when Switch2 is pressed or touched

pot2 -> sets pcm pulse width or the range of random pulse widths, selected by
Switchl

pot3 -> sets the delay between pcm pulse width loads

pot4 -> sets the volume of the PCM Voice4

*/

40

/ / already declared in ESP32 library
/ / static const uint8_t SCL =22; //Serial Lines to MCP4921 Multiplyer DACs
/ [static const uint8_t SDA = 21;

#include "MCP_DAC.h" //MCP_DAC Library by Rob Tillaart
MCP4921 myAYDACI(SDA, SCL);
MCP4921 myAYDAC2(SDA, SCL);
MCP4921 myAYDAC3(SDA, SCL);
MCP4921 myAYDAC4(SDA, SCL);

|] i e CONSTANTS/ VARIALBES ~~nmmm e
// GIOP Pin Assignments

static const uint8_t POT1 = 36;
static const uint8_t POT2 = 39;
static const uint8_t POT3 = 34;
static const uint8_t POT4 = 35;

short potl;
short pot2;
short pot3;
short pot4;

static const uint8_t SWITCH1 = 33; //Also Touch Sensor
static const uint8_t SWITCH?2 = 32;

bool switchl;
bool switch2;

/ / already declared in ESP32 library
/ | static const uint8_t DAC1 = 25;
/ | static const uint8_t DAC2 = 26;

static const uint8_t V1 =25; //Voice Pins to MCP4921 Multiplyer DACs
static const uint8_t V2 = 26;
static const uint8_t V3 =12;
static const uint8 t V4 =13;

static const uint8_t X1 = 27;
static const uint8_t X2 = 14;

41

static const uint8_t CS_V1=23; //Chip Select to MCP4921 Multiplyer DACs
static const uint8_t CS_V2 =19;

static const uint8_t CS_V3 =18;

static const uint8_t CS_V4 =4;

static const uint8_t MIDI TX2 =17; //MIDI1/O, also LED on MIDI Out
static const uint8_t MIDI_RX2 = 16; / /only on WROOM not WROVER ESP32s

static const uint8_t LED1 =5;
static const uint8 t LED2 =15;
static const uint8_t LED3 =2; //Blue LED on 32S boards

int pcm_freq = 440;

const int pcm_Channel =0; //0-15

int pcm_resolution = 12; // bits, 8 to 16.
int pcm_width = 1000;

int threshold = 20;
bool touch8detected = false;

/ | Touch9 Interrupt Function: sets up PCM frequency from potl
void gotTouch(){
ledcSetup(pem_Channel, (potl + 30), pcm_resolution);

J

/ *

/| Switch Interrupt Function: sets up PCM frequency from potl

void IRAM_ATTR switch2Function() {
ledcSetup(pem_Channel, (potl + 30), pcm_resolution);

}
*/

42

void setup() {

myAYDAC1.begin(CS_V1);
myAYDAC2.begin(CS_V2);
myAYDACS3.begin(CS_V3);
myAYDAC4.begin(CS_V4);

/ / initialize Switches with pullup resistor
pinMode(SWITCH1, INPUT_PULLUP);
pinMode(SWITCH?2, INPUT_PULLUP);

/ /initialize DAC chip selects, LOW select, unselect all
pinMode(CS_V1, OUTPUT);
digital Write(CS_V1, HIGH);
pinMode(CS_V2, OUTPUT);
digital Write(CS_V2, HIGH);
pinMode(CS_V3, OUTPUT);
digital Write(CS_V3, HIGH);
pinMode(CS_V4, OUTPUT);
digital Write(CS_V4, HIGH);

/ /initialize 4 digital voice inputs to Multiplyer DACs
pinMode(V1, OUTPUT);
digitalWrite(V1, HIGH);
pinMode(V2, OUTPUT);
digitalWrite(V2, HIGH);
pinMode(V3, OUTPUT);
digital Write(V3, HIGH);
pinMode(V4, OUTPUT);
digitalWrite(V4, HIGH);

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);

43

digitalWrite(LED3, HIGH); //flash board's blue LED
delay(500);

digital Write(LED3, LOW);

delay(500);

digital Write(LED3, HIGH);

delay(500);

digitalWrite(LED3, LOW);

/ / Serial.begin(115200);

/| configure PWM functionalities
ledcSetup(pem_Channel, pem_freq, pecm_resolution);

/| attach the PCM channel to V4
ledcAttachPin(V4, pcm_Channel);

[] s

/| As an Alternative: Set up Interrupt Function on Switch2, assign interrupt

/ | function, and set FALLING mode (High to Low Switch transition).

/ | attachInterrupt(digitalPinToInterrupt(SWITCH?2), switch2Function, FALLING);
[| e

/ | Setup Interrupt Function on Switch2 Touch control (pin T9).
/| ESP32 Library Function that attaches interrupt pin T9 to the service routine
touchAttachInterrupt(T9, gotTouch, threshold);

}

void loop() {
/ | potl is pcm frequency loaded by way of interrupt when Switch 2 is touched

loadSensors();
myAYDAC4.analogWrite(pot4); // pot4 is volume control of V4, pcm voice

if(switch1){ pcm_width = pot2; }
/| pot2 is pcm pulse width, Switch1 chooses between direct and random
else { pcm_width = random(0, pot2); }

44

ledcWrite(pem_Channel, pcm_width);

delay(pot3 >>5);

/ | pot3 is delay between pcm pulse width writes

void loadSensors(){ // load all current sensor values

potl = analogRead(POT1
pot2 = analogRead(POT2
pot3 = analogRead(POT3
potd = analogRead(POT4

);

);
);
).

7

switchl = digitalRead(SWITCH1);
switch2 = digitalRead (SWITCHZ2);

45

Timer Interrupt Voices

The next several sketches will build up to our goal of emulating the AY Arcade
Game Sound Chip of the 70s. This chip is based on 3 square wave voices plus a
pitched noise voice.

Each square wave voice is created by decrementing a register from some initial
value with a high frequency clock (IMHz/16). When the register reaches zero the
digital output pin of the voice is toggled to its opposite state, the register is reloaded
with its initial value and starts decrementing again. The resulting frequency is then
one half the clock frequency divided by the register value. So the register’s initial value
determines the frequency of the voice square wave.

Decrementing a value, resetting it, and toggling a pin can easily be done in
software but a steady clock is needed to time those actions at a steady and set interval.
The ESP32 provides timers that can initiate an interrupt routine at set intervals, perfect
for this application. Here is how it is set up:

hw_timer_t * timer = NULL; //pointer to a hardware timer on the ESP32
void IRAM_ATTR onTimer() {.....} //Interrupt Routine

timer = timerBegin(0, 80, true); //(timer#, 80MHz/80 prescaler, count up)
timerAttachInterrupt(timer, &onTimer, true); //(timer, InterruptRoutine, edge)
timerAlarmWrite(timer, 16, true); //(timer, (80Mhz/80)/16, repeat yes)
timerAlarmEnable(timer); //Start

This sketch sets up three square waves. The frequency determining registers are
freqlsave, freq2save, and freq3save. The user can use the pots to change the values in

these registers at any time, thus changing the voice frequencies.

Here is the Interrupt Routine for one voice that happens every 16 microseconds:

--freql; /| decrement counter
if (freql <= 0){ /[check if counter has reached zero
digitalWrite(V1, !digitalRead(V1)); //if so, toggle Voicel pin, and
freql = freqlsave; } // reload counter from freq. register

A o I I o

46

/*
ESP32 AY_Synth Setup
*/

//already declared in ESP32 library
//static const uint8_t SCL = 22; //Serial Lines to MCP4921 Multiplyer DACs
//static const uint8_t SDA = 21;

#include "MCP_DAC.h" //MCP_DAC Library by Rob Tillaart
MCP4921 myAYDAC1(SDA, SCL);
MCP4921 myAYDAC2(SDA, SCL);
MCP4921 myAYDAC3(SDA, SCL);
MCP4921 myAYDACA4(SDA, SCL);

R athtatatetoted CONSTANTS/VARIALBES ~~~~~~~~~~~~~~~
// GIOP Pin Assignments

static const uint8_t POT1 = 36;
static const uint8_t POT2 = 39;
static const uint8_t POT3 = 34;
static const uint8_t POT4 = 35;

short pot1;
short pot2;
short pot3;
short pot4;

static const uint8_t SWITCH1 = 33; //Also Touch Sensor
static const uint8_t SWITCH2 = 32;

bool switch1;
bool switch2;

//already declared in ESP32 library
//static const uint8_t DAC1 = 25;
//static const uint8_t DAC2 = 26;

static const uint8_t V1 = 25; //Voice Pins to MCP4921 Multiplyer DACs
static const uint8_t V2 = 26;
static const uint8_t V3 = 12;
static const uint8_t V4 = 13;

static const uint8_t X1 = 27;
static const uint8_t X2 = 14;

static const uint8_t CS_V1 = 28; //Chip Select to MCP4921 Multiplyer DACs
static const uint8_t CS_V2 = 19;

static const uint8_t CS_V3 = 18;

static const uint8_t CS_V4 = 4;

static const uint8_t MIDI_TX2 = 17; //MIDI I/O, also LED on MIDI Out
static const uint8_t MIDI_RX2 = 16; //only on WROOM, won't work on WROVER ESP32s

static const uint8_t LED1 = 5;

static const uint8_t LED2 = 15;
static const uint8_t LED3 = 2; //Blue LED on 32S boards

47

uint16_t AY_MidiNote_Hi[128] = { // AY course tune -- upper 4-bits of 12-bit tune
15,15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,

14,14,13,12,11,11,10,9,9,8,8, 7,
7,7,6,6,5,5,5,4,4,4,4,3,
3,3,33,2,2,22,22,2,1,
1,1,1,1,1,1,1,1,1,1,1,0,
0,000000000,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,
0,0,000000,0,0,0,0,
0,0000000,00,0,Q0,
0,000000000,0,0,
0,0,0,0,0,0,0,0}

uint16_t AY_MidiNote_Lo[128] = { // AY fine tune -- lower 8 bits of 12-bit tune
211, 211, 211, 211, 211, 211, 211, 211, 211, 211, 211, 211,
239, 25, 78, 141, 218, 47, 143, 247, 104, 225, 97, 233,
119, 12,167, 71, 237, 152, 71, 252, 180, 112, 49, 244,
188, 134, 83, 36, 246, 204, 164, 126, 90, 56, 24, 250,
222,195, 170, 146, 123, 102, 82, 63, 45, 28, 12, 253,
239, 225, 213, 201, 190, 179, 169, 159, 150, 142, 134, 127,
119, 113, 106, 100, 95, 89, 84, 80, 75, 71, 67, 63,
60, 56, 53, 50, 47, 45, 42, 40, 38, 36, 34, 32,
30, 28, 27, 25, 24, 22, 21, 20, 19, 18, 17, 16,
15,14,13,13,12,11,11,10,9, 9, 8, 8,
7,7,7,6,6,6,55};

uint16_t AY_Volume[16] = { //4-bit AY synth volume to 12-bit logarithmic volue
0, 10, 25, 51, 62, 102, 124, 205, 307, 512, 621, 1024, 1241, 2048, 2896, 4095 };

volatile uint16_t freq1 = 0;
volatile uint16_t freq2 = 0O;
volatile uint16_t freq3 = 0;
volatile uint16_t freq4 = 0;

volatile uint16_t freq1save = 0;
volatile uint16_t freq2save = 0;
volatile uint16_t freq3save = 0;
volatile uint16_t freq4save = 0;

int count = 0;

// The hardware timer pointer
hw_timer_t * timer = NULL;

// Interrupt Routine
void IRAM_ATTR onTimer() {

--freq1; //toggle V1 at end of freq1 countdown
if (freq1 <= 0){
digitalWrite(V1, !digitalRead(V1));
freq1 = freqisave;
}
--freq2; //toggle V2 at end of freq2 countdown
if (freq2 <= 0){
digitalWrite(V2, !digitalRead(V2));
freq2 = freg2save;
}
--freg3; //toggle V3 at end of freq3 countdown
if (freq3 <= 0){
digitalWrite(V3, !digitalRead(V3));
freq3 = freq3save;

void setup() {

myAYDAC1.begin(CS_
myAYDAC2.begin(CS_
myAYDACS.begin(CS_
myAYDAC4.begin(CS_

// initialize Switches with pullup resistor
pinMode(SWITCH1, INPUT_PULLUP);
pinMode(SWITCH2, INPUT_PULLUP);

//initialize DAC chip selects, LOW select, unselect all
pinMode(CS_V1, OUTPUT);

digitalWrite(CS_V1, HIGH);

pinMode(CS_V2, OUTPUT);

digitalWrite(CS_V2, HIGH);

pinMode(CS_V3, OUTPUT);

digitalWrite(CS_V3, HIGH);

pinMode(CS_V4, OUTPUT);

digitalWrite(CS_V4, HIGH);

//initialize 4 digital voice inputs to Multiplyer DACs
pinMode(V1, OUTPUT);

digitalWrite(V1, HIGH);

pinMode(V2, OUTPUT);

digitalWrite(V2, HIGH);

pinMode(V3, OUTPUT);

digitalWrite(V3, HIGH);

pinMode(V4, OUTPUT);

digitalWrite(V4, HIGH);

49

//set DACs to maximum for Voice inputs
myAYDAC1.analogWrite(4095);
myAYDAC2.analogWrite(4095);
myAYDAC3.analogWrite(4095);
myAYDAC4.analogWrite(4095)

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);

digitalWrite(LED3, HIGH); //flash board's blue LED
delay(500);

digitalWrite(LED3, LOW);

delay(500);

digitalWrite(LED3, HIGH);

delay(500);

digitalWrite(LED3, LOW);

// Serial.begin(115200);

// Initilise the timer.

// Parameter 1 is the timer we want to use. Valid: 0, 1, 2, 3 (total 4 timers)

// Parameter 2 is the prescaler. The ESP32 default clock is at 80MhZ.

// (look under Arduino Menu Tools/Flash Frequency) The value "80" will

// divide the clock by 80, giving us 1,000,000 ticks per second.

// Parameter 3 is true means this counter will count up, instead of down (false).
timer = timerBegin(0, 80, true);

// Attach the timer to the interrupt service routine named "onTimer".

// The 3rd parameter is set to "true" to indicate that we want to use the "edge" type (instead of "flat").

timerAttachinterrupt(timer, &onTimer, true);

// This is where we indicate the frequency of the interrupts.

// The value "16" (because of the prescaler we set in timerBegin) will produce

// one interrupt every 16 microseconds.

// The 3rd parameter is true so that the counter reloads when it fires an interrupt, and so we
// can get periodic interrupts (instead of a single interrupt).

timerAlarmWrite(timer, 16, true);

// Start the timer
timerAlarmEnable(timer);

void loop() {
count++;

if(count >= 10000){
freq1save = midi_to_Freq((analogRead(POT1)) >> 5);
freg2save = midi_to_Freq((analogRead(POT2)) >> 5);
freq3save = midi_to_Freqg((analogRead(POT3)) >> 5);
count =0;

}

50

void loadSensors(){ // load all current sensor values
pot1 = analogRead(POT1) ;
pot2 = analogRead(POT2) ;
pot3 = analogRead(POTS3);
pot4 = analogRead(POT4)

switch1 = digitalRead(SWITCH1);
switch2 = digitalRead(SWITCH2);

}

void serviceVoices(){
--freq1; //toggle V1 at end of freq1 countdown
if (freq1 <= 0){
digitalWrite(V1, digitalRead(V1));
freq1 = freq1save;
}
--freq2; //toggle V2 at end of freq2 countdown
if (freq2 <= 0){
digitalWrite(V2, !digitalRead(V2));
freq2 = freq2save;
}
--freg3; //toggle V3 at end of freq3 countdown
if (freq3 <= 0){
digitalWrite(V3, !digitalRead(V3));
freq3 = freq3save;
}
}

uint16_t midi_to_Freq(uint8_t note){
uint16_t x;
x = AY_MidiNote_Lo[note] | (AY_MidiNote_Hi[note] << 8);
return x;

}

51

Timer Voice Core

The ESP32 has two cores that can run instructions simultaneously. This sketch
sets up both Cores with Tasks that will run simultaneously.

Core 0 Task 1 is to clock the Voice Frequencies using a timer interrupt as shown
in the previous sketch. Keeping the pot and switch variables updated is also thrown in
as a job for the Core 0 Task.

Core 1 Task is the Main Loop. It will handle Voice Performance which involves
handling voice frequencies and volumes over time.

Core 0 Task 1 is declared inside SETUP, and the actual task is built like a
function placed between SETUP and the main LOOP.

TaskHandle_t Task1;

//create a task executed in Task1code() function, priority , executed on core 0
xTaskCreatePinnedToCore(
Tasklcode, /* Task function. */
"Task1", /* name of task (shown below). */
10000, /* Stack size of task */
NULL, /* parameter of the task */
1, /* priority of the task */
&Taskl, /* handle to keep track of task */
0 /* pin task to core0*/

void Tasklcode(void * pvParameters){
Serial.print(""Task1 running on core ");
Serial.println(xPortGetCorelD());

D D D D D D D D D D D D D

52

/*
ESP32 AY_Synth Setup

Core 0 Task is to clock the Voice Frequencies using a timer interrupt
and to keep the pot and switch variables updated

Core 1 Task is the Main Loop that handles Voice Performance
*/

//already declared in ESP32 library
//static const uint8_t SCL = 22; //Serial Lines to MCP4921 Multiplyer DACs
//static const uint8_t SDA = 21;

TaskHandle_t Task1;

#include "MCP_DAC.h" //MCP_DAC Library by Rob Tillaart
MCP4921 myAYDAC1(SDA, SCL);
MCP4921 myAYDAC2(SDA, SCL);
MCP4921 myAYDAC3(SDA, SCL);
MCP4921 myAYDACA4(SDA, SCL);

[] ~mmmm CONSTANTS/VARIALBES ~~~~~~~mmmmmnn~
// GIOP Pin Assignments

static const uint8_t POT1 = 36;
static const uint8_t POT2 = 39;
static const uint8_t POT3 = 34;
static const uint8_t POT4 = 35;

volatile short poti;
volatile short pot2;
volatile short pot3;
volatile short pot4;

static const uint8_t SWITCH1 = 33; //Also Touch Sensor
static const uint8_t SWITCH2 = 32;

volatile bool switch1;
volatile bool switch2;

//already declared in ESP32 library
//static const uint8_t DAC1 = 25;
//static const uint8_t DAC2 = 26;

static const uint8_t V1 = 25; //Voice Pins to MCP4921 Multiplyer DACs
static const uint8_t V2 = 26;
static const uint8_t V3 = 12;
static const uint8_t V4 = 13;

static const uint8_t X1 = 27;
static const uint8_t X2 = 14;

static const uint8_t CS_V1 = 23; //Chip Select to MCP4921 Multiplyer DACs
static const uint8_t CS_V2 =19;

static const uint8_t CS_V3 = 18;

static const uint8_t CS_V4 = 4;

static const uint8_t MIDI_TX2 = 17; //MIDI I/O, also LED on MIDI Out
static const uint8_t MIDI_RX2 = 16; //only on WROOM, won't work on WROVER ESP32s

53

static const uint8_t LED1 = 5;
static const uint8_t LED2 = 15;
static const uint8_t LED3 = 2; //Blue LED on 32S boards

uint16_t AY_MidiNote_Hi[128] = { // AY course tune -- upper 4-bits of 12-bit tune
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,

14,14,13,12,11,11,10,9,9,8,8, 7,
7,7,6,6,5,5,5,4,4,4,4,3,
3,3,33,2,2,2,2,2,2,2,1,
1,1,1,1,1,1,1,1,1,1,1,0,
0,0,0,0000,0,0,0,0,0,
0,0,0000000,0,0,0,
0,0000000,0,0,0,Q0,
0,000000000,0,0,
0,00000000,0,0,Q0,
0,0,0,0,0,0,0,0}%

uint16_t AY_MidiNote_Lo[128] = { // AY fine tune -- lower 8 bits of 12-bit tune
211, 211, 211, 211, 211, 211, 211, 211, 211, 211, 211, 211,
239, 25, 78, 141, 218, 47, 143, 247, 104, 225, 97, 233,
119,12, 167, 71, 237, 152, 71, 252, 180, 112, 49, 244,
188, 134, 83, 36, 246, 204, 164, 126, 90, 56, 24, 250,
222,195, 170, 146, 123, 102, 82, 63, 45, 28, 12, 253,
239, 225, 213, 201, 190, 179, 169, 159, 150, 142, 134, 127,
119, 113, 106, 100, 95, 89, 84, 80, 75, 71, 67, 63,
60, 56, 53, 50, 47, 45, 42, 40, 38, 36, 34, 32,
30, 28, 27, 25, 24, 22, 21, 20, 19, 18, 17, 16,
15, 14,13,13,12,11,11,10,9, 9, 8, 8,
7,7,7,6,6,6,5,5};

uint16_t AY_Volume[16] = { //4-bit AY synth volume to 12-bit logarithmic volue
0, 10, 25, 51, 62, 102, 124, 205, 307, 512, 621, 1024, 1241, 2048, 2896, 4095 };

volatile uint16_t freq1 = 0;
volatile uint16_t freq2 = 0;
volatile uint16_t freq3 = 0;
volatile uint16_t freq4 = 0;

volatile uint16_t freq1save = 0;
volatile uint16_t freq2save = 0;
volatile uint16_t freq3save = 0;
volatile uint16_t freq4save = 0;

int count = 0;

volatile int pcm_freq = 440;

const int pcm_Channel0 = 0;

const int pcm_resolution = 12; // bits, 8 to 16.
volatile int pcm_width = 2000;

// Touch9 Interrupt Function: sets up PCM frequency from pot4
void gotTouch(){

ledcSetup(pcm_Channel0, (pot4 + 30), pcm_resolution);
1

// The hardware timer pointer
hw_timer_t * timer = NULL;

// Interrupt Routine. Run every 16 microseconds.
void IRAM_ATTR onTimer() { serviceVoices(); }

void setup() {

myAYDAC1.begin(CS_V1)
myAYDAC2.begin(CS_V2)
myAYDACS3.begin(CS_V3);
myAYDAC4.begin(CS_V4)

// initialize Switches with pullup resistor
pinMode(SWITCH1, INPUT_PULLUP);
pinMode(SWITCH2, INPUT_PULLUP);

//initialize DAC chip selects, LOW select, unselect all
pinMode(CS_V1, OUTPUT);

digitalWrite(CS_V1, HIGH);

pinMode(CS_V2, OUTPUT);

digitalWrite(CS_V2, HIGH);

pinMode(CS_V3, OUTPUT);

digitalWrite(CS_V3, HIGH);

pinMode(CS_V4, OUTPUT);

digitalWrite(CS_V4, HIGH);

//initialize 4 digital voice inputs to Multiplyer DACs
pinMode(V1, OUTPUT);

digitalWrite(V1, HIGH);

pinMode(V2, OUTPUT);

digitalWrite(V2, HIGH);

pinMode(V3, OUTPUT);

digitalWrite(V3, HIGH);

pinMode(V4, OUTPUT);

digitalWrite(V4, HIGH);

//set DACs to maximum for Voice inputs
myAYDAC1.analogWrite(4095);
myAYDAC2.analogWrite(4095);
myAYDACS3.analogWrite(4095);
myAYDAC4.analogWrite(4095)

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);

digitalWrite(LED3, HIGH); //flash board's blue LED
delay(500);

digitalWrite(LED3, LOW);

delay(500);

digitalWrite(LED3, HIGH);

delay(500);

digitalWrite(LED3, LOW);

55

Serial.begin(115200);
int threshold = 20;

// Setup Interrupt Function on Switch2 Touch control (pin T8).
// ESP32 Library Function that attaches interrupt pin T8 to the service routine
touchAttachinterrupt(T8, gotTouch, threshold);

//create a task executed in Task1code() function, with priority 1 and executed on core 0
xTaskCreatePinnedToCore(
Task1code, /* Task function. */
"Task1", /* name of task (shown below). */
10000, /* Stack size of task */
NULL, /* parameter of the task */
1, /" priority of the task */
&Task1, /* handle to keep track of task */
0 /* pin task to coreQ*/

)
delay(500);

} //end of Setup

//Task1code:
void Task1code(void * pvParameters){
Serial.print("Task1 running on core ");
Serial.printin(xPortGetCorelD());

// V4 Noise Voice created by random pulse width in a PWM waveform
// configure PWM functionalities
ledcSetup(pcm_Channel0, pcm_freq, pcm_resolution);

// attach the PCM channel to V4
ledcAttachPin(V4, pcm_ChannelQ);

//' V1, V2, V3 voices are squarewaves. Freq set by a 16 microsecond timer interrupt routine.
// Initilise the timer interrupt.

// Parameter 1 is the timer we want to use. Valid: 0, 1, 2, 3 (total 4 timers)

// Parameter 2 is the prescaler. The ESP32 default clock is at 80MhZ.

// (look under Arduino Menu Tools/Flash Frequency) The value "80" will

// divide the clock by 80, giving us 1,000,000 ticks per second.

// Parameter 3 is true means this counter will count up, instead of down (false).

timer = timerBegin(0, 80, true);

// Attach the timer to the interrupt service routine named "onTimer".

// The 3rd parameter is set to "true" to indicate that we want to use the "edge" type (instead of "flat").

timerAttachinterrupt(timer, &onTimer, true);

// This is where we indicate the frequency of the interrupts.

// The value "16" (because of the prescaler we set in timerBegin) will produce

// one interrupt every 16 microseconds.

// The 3rd parameter is true so that the counter reloads when it fires an interrupt, and so we
// can get periodic interrupts (instead of a single interrupt).

timerAlarmWrite(timer, 16, true);

// Start the timer to perform the "onTimer" routine every 16 microseconds
timerAlarmEnable(timer);

56

for(;;){ //loop to update pot and switch variables for use in Main Loop
//timer interrupts for the voices happen in the background

delay(30);
loadSensors();

void loop() { //Here is where Voice Performance is programmed for the 4 voices
count++; //Simple test Voice Performance

if(count >= 10000){ // limit Voice changes
freq1save = midi_to_Freq(pot1 >> 5); // V1 Frequency set
freg2save = midi_to_Freq(pot2 >> 5); // V2 Frequency set
freq3save = midi_to_Freq(pot3 >> 5); // V3 Frequency set
count =0;

// V4 Pitched Noise Freq set to pot4 value when touch8 is touched ->
// ledcSetup(pcm_Channel0, (pot4 + 30), pcm_resolution); (pot4+30) = frequency in Hertz

}
} //end of Loop

void loadSensors(){ // load all current sensor values
pot1 = analogRead(POT1) ;
pot2 = analogRead(POT2) ;
pot3 = analogRead(POT3) ;
pot4 = analogRead(POT4) ;

switch1 = digitalRead(SWITCH?1);
switch2 = digitalRead(SWITCH2);

}

void serviceVoices(){
--freq1; //toggle V1 at end of freq1 countdown
if (freq1 <= 0){
digitalWrite(V1, digitalRead(V1));
freq1 = freq1save;
}
--freq2; //toggle V2 at end of freq2 countdown
if (freq2 <= 0){
digitalWrite(V2, !digitalRead(V2));
freq2 = freq2save;
}
--freg3; //toggle V3 at end of freq3 countdown
if (freq3 <= 0){
digitalWrite(V3, !digitalRead(V3));
freq3 = freq3save;
}
//load random pulse Width into PCM V4

ledcWrite(pcm_Channel0, random(2, 4093));

}

uint16_t midi_to_Freq(uint8_t note){
uint16_t x;
x = AY_MidiNote_Lo[note] | (AY_MidiNote_Hi[note] << 8);
return x;

}

57

Random Voices (2Core)

This sketch starts with the 2 Core, 3 Voice base of the previous sketch, then, in
the Main Loop, a complete performance device is built based on random pitches and
voice durations all controlled by the 4 pots and 2 switches.

D D O D O 0 D O 0 o o o

/*
ESP32 AY_Synth Setup

Core 0 Task is to clock the Voice Frequencies using a timer interrupt
and to keep the pot and switch variables updated

Core 1 Task is the Main Loop to handle Voice Performance
*/

//already declared in ESP32 library
//static const uint8_t SCL = 22; //Serial Lines to MCP4921 Multiplyer DACs
//static const uint8_t SDA = 21;

TaskHandle_t Task1;

#include "MCP_DAC.h" //MCP_DAC Library by Rob Tillaart
MCP4921 myAYDAC1(SDA, SCL);
MCP4921 myAYDAC2(SDA, SCL);
MCP4921 myAYDACS3(SDA, SCL);
MCP4921 myAYDACA4(SDA, SCL);

[l ~mmm CONSTANTS/VARIALBES ~~~~~~~mmmsm s
1/ GIOP Pin Assignments

static const uint8_t POT1 = 36;
static const uint8_t POT2 = 39;
static const uint8_t POT3 = 34;
static const uint8_t POT4 = 35;

volatile short pot1;
volatile short pot2;
volatile short pot3;
volatile short pot4;

static const uint8_t SWITCH1 = 33; //Also Touch Sensor
static const uint8_t SWITCH2 = 32;

volatile bool switch1;
volatile bool switch2;

58

//already declared in ESP32 library
//static const uint8_t DAC1 = 25;
//static const uint8_t DAC2 = 26;

static const uint8_t V1 = 25; //Voice Pins to MCP4921 Multiplyer DACs
static const uint8_t V2 = 26;
static const uint8_t V3 = 12;
static const uint8_t V4 = 13;

static const uint8_t X1 = 27;
static const uint8_t X2 = 14;

static const uint8_t CS_V1 = 23; //Chip Select to MCP4921 Multiplyer DACs
static const uint8_t CS_V2 = 19;

static const uint8_t CS_V3 = 18;

static const uint8_t CS_V4 = 4;

static const uint8_t MIDI_TX2 = 17; //MIDI I/O, also LED on MIDI Out
static const uint8_t MIDI_RX2 = 16; //only on WROOM, won't work on WROVER ESP32s

static const uint8_t LED1 = 5;
static const uint8_t LED2 = 15;
static const uint8_t LED3 = 2; //Blue LED on 32S boards

uint16_t AY_MidiNote_Hi[128] = { // AY course tune -- upper 4-bits of 12-bit tune
15,15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,

14,14,13,12,11,11,10,9,9,8,8, 7,
7,7,6,6,5,5,5,4,4,4,4,3,
3,333,2,2,2,2,22,2,1,
1,1,1,1,1,1,1,1,1,1,1,0,
0,000000000,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,
0,0,00000,0,0,0,0,0,
0,0000000,0,0,0,0,
0,0000000,00,0,0,
0,0,0,0,0,0,0,0}

uint16_t AY_MidiNote_Lo[128] = { // AY fine tune -- lower 8 bits of 12-bit tune
211, 211, 211, 211, 211, 211, 211, 211, 211, 211, 211, 211,
239, 25, 78, 141, 218, 47, 143, 247, 104, 225, 97, 233,
119, 12,167, 71, 237, 152, 71, 252, 180, 112, 49, 244,
188, 134, 83, 36, 246, 204, 164, 126, 90, 56, 24, 250,
222,195, 170, 146, 123, 102, 82, 63, 45, 28, 12, 253,
239, 225, 213, 201, 190, 179, 169, 159, 150, 142, 134, 127,
119, 113, 106, 100, 95, 89, 84, 80, 75, 71, 67, 63,
60, 56, 53, 50, 47, 45, 42, 40, 38, 36, 34, 32,
30, 28, 27, 25, 24, 22, 21, 20, 19, 18, 17, 16,
15, 14,13, 13, 12,11, 11,10, 9, 9, 8, 8,
7,7,7,6,6,6,5,5};

uint16_t AY_Volume[16] = { //4-bit AY synth volume to 12-bit logarithmic volue
0,10, 25, 51, 62, 102, 124, 205, 307, 512, 621, 1024, 1241, 2048, 2896, 4095 };

volatile uint16_t freq1 = 0;
volatile uint16_t freq2 = 0;
volatile uint16_t freq3 = O;
volatile uint16_t freq4 = 0;

volatile uint16_t freq1save = 0;
volatile uint16_t freq2save = 0;
volatile uint16_t freq3save = 0;
volatile uint16_t freq4save = 0;

59

int count = 0;

int freq=0;

int durA=0;

int durA_count=0;
int durB=0;

int durB_count=0;
int durC=0;

int durC_count=0;
int envA=0;

int envB=0;

int envC=0;

int dur=0;

// The hardware timer pointer
hw_timer_t * timer = NULL;

// Interrupt Routine. Run every 16 microseconds.
void IRAM_ATTR onTimer() { serviceVoices(); }

void setup() {

myAYDAC1.begin(CS_V1);
myAYDAC2.begin(CS_V2);
myAYDAC3.begin(CS_V3);
myAYDAC4.begin(CS_V4);

// initialize Switches with pullup resistor
pinMode(SWITCH1, INPUT_PULLUP);
pinMode(SWITCHZ2, INPUT_PULLUP);

//initialize DAC chip selects, LOW select, unselect all
pinMode(CS_V1, OUTPUT);

digitalWrite(CS_V1, HIGH);

pinMode(CS_V2, OUTPUT);

digitalWrite(CS_V2, HIGH);

pinMode(CS_V3, OUTPUT);

digitalWrite(CS_V3, HIGH);

pinMode(CS_V4, OUTPUT);

digitalWrite(CS_V4, HIGH);

//initialize 4 digital voice inputs to Multiplyer DACs
pinMode(V1, OUTPUT);

digitalWrite(V1, HIGH);

pinMode(V2, OUTPUT);

digitalWrite(V2, HIGH);

pinMode(V3, OUTPUT);

digitalWrite(V3, HIGH);

pinMode(V4, OUTPUT);

digitalWrite(V4, HIGH);

60

//set DACs to minimum for Voice inputs
myAYDAC1.analogWrite(0);
myAYDAC2.analogWrite(0);
myAYDACS3.analogWrite(0);
myAYDAC4.analogWrite(0);

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);

digitalWrite(LED3, HIGH); //flash board's blue LED
delay(500);

digitalWrite(LED3, LOW);

delay(500);

digitalWrite(LED3, HIGH);

delay(500);

digitalWrite(LED3, LOW);

Serial.begin(115200);

//create a task executed in Task1code() function, with priority 1 and executed on core 0
xTaskCreatePinnedToCore(
Task1code, /* Task function. */
"Task1", /* name of task (shown below). */
10000, /* Stack size of task */
NULL, /* parameter of the task */
1, /* priority of the task */
&Task1, /* handle to keep track of task */
0 /* pin task to coreQ*/
)

delay(500);

} //end of Setup

//Task1code:
void Task1code(void * pvParameters){
Serial.print("Task1 running on core ");
Serial.printin(xPortGetCorelD());

// Initilise the timer interrupt.
// Parameter 1 is the timer we want to use. Valid: 0, 1, 2, 3 (total 4 timers)
// Parameter 2 is the prescaler. The ESP32 default clock is at 80MhZ.
// (look under Arduino Menu Tools/Flash Frequency) The value "80" will
// divide the clock by 80, giving us 1,000,000 ticks per second.
// Parameter 3 is true means this counter will count up, instead of down (false).
timer = timerBegin(0, 80, true);

// Attach the timer to the interrupt service routine named "onTimer".

// The 3rd parameter is set to "true" to indicate that we want to use the "edge" type (instead of "flat").

timerAttachinterrupt(timer, &onTimer, true);

// This is where we indicate the frequency of the interrupts.
// The value "16" (because of the prescaler we set in timerBegin) will produce
// one interrupt every 16 microseconds.

// The 3rd parameter is true so that the counter reloads when it fires an interrupt, and so we

// can get periodic interrupts (instead of a single interrupt).
timerAlarmWrite(timer, 16, true);

// Start the timer to perform the "onTimer" routine every 16 microseconds
timerAlarmEnable(timer);

for(;;){ //loop to update pot and switch variables for use in Main Loop
delay(30);
loadSensors();

}
}

void loop() {

dur = pot1 >> 3; //set envelope durations

/] === Toggle Switch turns on noise in one voice ------------------
/*
Toggle = digitalRead(A2);
if (Toggle){
IdEnable(B110000); //Enable noise and tones in one voice (low enable)
}
else {
IdEnable(B111000); //Enable only tones (low enable)
}
*/
I =mmmmmmee- Voice A from AY Chip

if (envA != 0){ //ramping down voice A envelope, 4095 to 0

if (durA_count != 0){ //wait for a count of durA
durA_count -=1;

else { // when the count reaches zero decrement voice A envelope, reset count
durA_count = durA;
envA -=1;
myAYDAC1.analogWrite(envA);
}
}

else{ // when envelope reaches zero, reset voice A with new frequency and envelope

//get new random pitch for voice A
if(switch2) { freq1save = getFreq(); }
else { freq1save = midi_to_Freq(getNote(); }

durA = random(1, dur) ; // get random 8 bit duration for envelope A
durA_count = durA;

envA = 4095;
myAYDAC1.analogWrite(envA); //set voice A full on

62

/] === Voice B from AY Chip

if (envB = 0){ //ramping down voice B envelope, 4095 to 0

if (durB_count != 0){ //wait for a count of durB
durB_count -=1;
}
else { // when the count reaches zero decrement voice B envelope, reset count
durB_count = durB;
envB -=1;
myAYDAC?2.analogWrite(envB);
}
}

else{ // when envelope reaches zero, reset voice B with new frequency and envelope

//get new random pitch for voice A
if(switch2) { freq2save = getFreq(); }
else { freq2save = midi_to_Freq(getNote(); }

durB = random(1, dur) ; // get random 8 bit duration for envelope B
durB_count = durB;

envB = 4095;
myAYDAC?2.analogWrite(envB); //set voice B full on

/] === Voice C from AY Chip
if (envC != 0){ //ramping down voice C envelope, 4095 to 0

if (durC_count != 0){ //wait for a count of durC
durC_count -= 1;
}
else { // when the count reaches zero decrement voice C envelope, reset count
durC_count = durC;
envC -=1;
myAYDACS.analogWrite(envC);
}

else{ // when envelope reaches zero, reset voice C with new frequency and envelope
//get new random pitch for voice A
if(switch2) { freq3save = getFreq(); }
else { freq3save = midi_to_Freq(getNote(); }
durC = random(1, dur) ; // get random 8 bit duration for envelope C
durC_count = durC;

envC = 4095;
myAYDAC3S.analogWrite(envC);//set voice C full on

/] ==mmmmmm - Switch 1 Slows everything to almost a standstill
if (switch1 == 0){
delay(pot4 >> 4);
}
//delayMicroseconds(100);
}// End of Loop

63

int getFreq() { // getting random frequency for Voices
int basefreq = (pot3 >> 4);
int result = basefreq + random(pot2 >> 3);
return result;

}

int getNote() { // getting random MIDI Note for Voices
int basenote = ((pot3 >> 5) + 10); // 0to 127
int note = basenote + random(pot2 >> 5);
int result = min(note, 127);
return result;

}

void loadSensors(){ // load all current sensor values
pot1 = analogRead(POT1) ;
pot2 = analogRead(POT2) ;
pot3 = analogRead(POTS3);
pot4 = analogRead(POT4)

switch1 = digitalRead(SWITCH1);
switch2 = digitalRead(SWITCH2);

}

void serviceVoices(){
--freq1; //toggle V1 at end of freq1 countdown
if (freq1 <= 0){
digitalWrite(V1, !digitalRead(V1));
freq1 = freq1save;
}
--freq2; //toggle V2 at end of freq2 countdown
if (freq2 <= 0){
digitalWrite(V2, !digitalRead(V2));
freq2 = freq2save;
}
--freg3; //toggle V3 at end of freq3 countdown
if (freq3 <= 0){
digitalWrite(V3, !digitalRead(V3));
freq3 = freq3save;
}
}

uint16_t midi_to_Freq(uint8_t note){
uint16_t x;
x = AY_MidiNote_Lo[note] | (AY_MidiNote_Hi[note] << 8);
return x;

}

64

SPIFFS File System

SPI Flash File Storage is non-volatile flash memory that acts like a small SD
Card onboard the ESP32 chip. Looking at the Tools/PartitionScheme in the Arduino
IDE Menus, you will typically see 1.5 MB of the 4MB flash memory of the ESP32
allocated to SPIFFS.

SPIFFS is used for storing files of any kind. In our next sketch, it will make a
convenient space to hold AY Arcade Game sound files to be played back.

The sketch here lists the sources for downloading the necessary libraries used to
access the SPIFFS memory. The sketch includes two libraries:

include “FS.h” [/ File System
include “SPIFFS.h” /[SPI Flash File Storage

FS library: https://github.com/espressif/arduino-esp32/tree/master/libraries/FS
SPIFFS library: https://github.com/espressif/arduino-esp32/tree/master/libraries/SPIFFS

These libraries also provide a SPIFFS_Test.ino sketch in the Arduino Examples
Menu. The functions demonstrated in that library are a bit different from some of the
SPIFFS access functions in this sketch, but both do the same thing, allowing you to
openFile, readFile, writeFile, appendFile, renameFile, deleteFile, listDirectories, and so
on.

Loading files into SPIFFS memory can be done from Arduino code, but it is not
easy. Fortunately, there is a plugin for the Arduino IDE that makes loading files easy.

ESP32 sketch data upload tool: https://github.com/me-no-dev/arduino-esp32fs-plugin/releases/

https://randomnerdtutorials.com/install-esp32-filesystem-uploader-arduino-ide/

Follow the directions from the random-nerd-turtorials given above to install the
Arduino ESP32 Filesystem Uploader. Once installed, put your files into a folder
named “data” and put that folder inside the folder containing this .ino sketch. Open
the sketch and execute the command on the Arduino Menu Tools/
ESP32_Sketch_Data_Upload. While uploading be sure the Arduino Monitor window
is closed, and press the Boot button on the ESP32 board. The Data_Upload will also
fail if the data folder size is greater than about 1MB.

O D O O O O O O o~~~ i~~~

65

/*********

*

* - Reading and writing AY synth register files from the SPIFFS

*

* This sketch demonstrates how to read, write and append to files stored in

* the SPIFFS of an ESP32.

*

* AY .reg (register) files uploaded to SPIFF using Tools/"ESP32 Sketch Data Upload"
* after loading files into "data" folder in the Arduino folder of this sketch.

* create a new folder named "data". Store the AY register files in the data directory. Use the
* SPIFFS upload tool from the Arduino IDE to upload the files to the SPIFFS. Then run

* the sketch.

* File manipulation functions taken from SPIFFS Library Examples/SPIFFS/SPIFFS_Test
* And SPIFFS_Manipulating_File.ino in "Learn ESP32 with Arduino IDE" by Rui and Sara Santos.

*********/

#include "FS.h"
#include "SPIFFS.h"

// Create a File object to manipulate your file
File myFile;

// File paths

const char* myFilePath1 = "/cybernoid.reg";
const char® myFilePath2 = "/delta.reg";
const char* myFilePath3 = "/stormlord.reg";
const char* myFilePath4 = "/outrun1.reg";
const char* myFilePath5 = "/sidewinder.reg";

uint8_t Aydata[14];

1. ESP32 Datasheet: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

2. FS library: https://github.com/espressif/arduino-esp32/tree/master/libraries/FS

* 3. SPIFFS library: https://github.com/espressif/arduino-esp32/tree/master/libraries/SPIFFS

4. ESP32 sketch data upload tool: https://github.com/me-no-dev/arduino-esp32fs-plugin/releases/

5. ESP32 FS tool (useful for many things, including erasing flash memory): https://github.com/espressif/esptool

Arcade AYregister files from Daniel Tufvesson at http://www.waveguide.se/?article=ym-playback-on-the-ymz284

66

void setup(){
// Serial Monitor
Serial.begin(115200);

Serial.printin("");
Serial.printin("");

// Initialize SPIFFS

if(lSPIFFS.begin(true)){
Serial.printIn("Error while mounting SPIFFS");
return;

}

/*

if(SPIFFS.remove(myFilePath1)){
Serial.printIn("File successfully deleted");

}
elsef
Serial.print("Deleting file failed!");

if(SPIFFS.remove(myFilePath2)){
Serial.printin("File successfully deleted");

}

elsef
Serial.print("Deleting file failed!");

if(SPIFFS.remove(myFilePath3)){
Serial.printin("File successfully deleted");

}
elsef
Serial.print("Deleting file failed!");

if(SPIFFS.remove(myFilePath4)){
Serial.printIn("File successfully deleted");

}
elsef
Serial.print("Deleting file failed!");

}

if(SPIFFS.remove(myFilePath5)){
Serial.printin("File successfully deleted");
}
else{
Serial.print("Deleting file failed!");

listDir(SPIFFS, "/", 0); //see function below
Serial.printin("");

myFile = SPIFFS.open(myFilePath2, FILE_READ); //specify file to be printed

Serial.print(myFile.name());

Serial.print(" Opened for Printing ------- File size: ");
Serial.printin(myFile.size();

Serial.printin("");

// 14 AY File register functions
Serial.print("A_FreqL A_FreqH B_FreqlL B_FreqH C_FreqL C_FreqH ");
Serial.print("N_Freq Enables A_Amp B_AMP C_AMP");
Serial.printin("");
Serial.printin("");

while(myFile.available()) { //Print 11 AY registers per line,
//print in a format that could be copied and pasted to a playback 2-dimension array

Serial.print("{ "); // print bank start
for(int x=0; x<10; x++){

PrintHex8(myFile.read(), 1); //print 10 hex values with cammas
Serial.print(", ");

PrintHex8(myFile.read(), 1); // print 11th value without camma
Serial.print(" }, "); // print bank end and comma

myFile.read(); myFile.read(); myFile.read(); // read 3 unused ENV bytes
Serial.printin(" "); // new line for new bank

} // End of while available

myFile.close();
Serial.printin("File Closed ");

/*

68

}

// Open file and write data to it

myFile = SPIFFS.open(myFilePath, FILE_WRITE);

if (myFile.print("Example message in write mode")){
Serial.printin("Message successfully written");

}

else{
Serial.print("Writting message failled!!");

}

myFile.close();

// Append data to file

myFile = SPIFFS.open(myFilePath, FILE_APPEND);

if(myFile.print(" - Example message appended to file")){
Serial.printin("Message successfully appended");

}

else{
Serial.print("Appending failled!");

}

myFile.close();

// Read file content

myFile = SPIFFS.open(myFilePath, FILE_READ);

Serial.print("File content: \"");

while(myFile.available()) {
Serial.write(myFile.read());

}
Serial.printin("\"");

// Check file size
Serial.print(myFile.name());
Serial.print(" File size: ");
Serial.printin(myFile.size());

myFile.close();

void renameFile(fs::FS &fs, const char * path1, const char * path2){
Serial.printf("Renaming file %s to %s\r\n", path1, path2);
if (fs.rename(path1, path2)) {
Serial.printin("- file renamed");
}else {
Serial.printIn("- rename failed");

}

69

// Delete file
if(SPIFFS.remove(myFilePath)){
Serial.printIin("File successfully deleted");
}
else{
Serial.print("Deleting file failed!");

}

void PrintHex8(uint8_t data, uint8_t length) // prints 8-bit data in hex with leading zeroes
{
for (int i=0; i<length; i++) {
Serial.print("0x");
if (data<0x10) {Serial.print("0");}
Serial.print(data,HEX);

void listDir(fs::FS &fs, const char * dirname, uint8_t levels){
Serial.printf("Listing directory: %s\r\n", dirname);

File root = fs.open(dirname);
if(lroot){
Serial.printin("- failed to open directory");
return;
}
if(lroot.isDirectory()){
Serial.printin(" - not a directory");
return;

}

File file = root.openNextFile();
while(file){
if(file.isDirectory()){
Serial.print(" DIR : ");
Serial.printin(file.name());
if(levels){
listDir(fs, file.name(), levels -1);
}
}else {
Serial.print(" FILE: ");
Serial.print(file.name());
Serial.print("\tSIZE: ");
Serial.printin(file.size();

}

file = root.openNextFile();

AY Arcade Playback

The AY-3-8910 is a 3-voice programmable sound generator chip designed by
General Instrument. The AY-3-8910 and its variants became popular chips in many
arcade games during the 70s and 80s. It was essentially a state machine, with the state
being set up in a series of sixteen 8-bit registers. See the next page diagram of the chip
architecture with its registers.

Six registers controlled the pitches produced in the three primary channels.
Three squarewaves were generated by dividing down a master clock of IMHz/16 by
the contents of one eight-bit and one 4-bit register dedicated to each channel. 12 bits
then gave a total of 4095 possible pitches. Another register controlled the period of a
pseudo-random noise generator. A 6-bit Enable register controlled the mixing — one
bit to enable or disable tones in each of 3 output channels, and one bit to enable or
disable noise in each channel. Three additional 4-bit registers controlled the
logarithmic volume of the 3 channels. Finally the last three registers controlled the
times of an envelope controller.

When it came to actual practice, however, the three envelope registers were
hardly ever used. The practice was to load a bank of all 14 8-bit registers every 50
milliseconds from a file of consecutive register banks, whether or not the values
actually changed. Three 4-bit volume registers loaded every 50 ms allowed for real-
time volume envelopes negating the need for any other envelope control.

AY playback files can still be found on the Web (www.modland.net), however
they come heavily compressed. Daniel Tufvesson (http://www.waveguide.se/?
article=ym-playback-on-the-ymz284) has outlined a method for decompressing the
AY files into Register Dump files and has provided several example “.reg” files used
for playback in this sketch. Several of these register bank files were uploaded to the
ESP32 SPIFFS flash memory following the directions presented in the previous sketch.

The following AY Arcade Playback sketch follows closely the inner workings of
the AY chip and the conventional Arcade Game method for feeding data to the chip
every 50 ms.

Core0 Task1 clocks the 3 square wave voices from a 16 microsecond Timer
Interrupt. The voice pins are toggled after counting down from a 12-bit frequency
counter, just as done in hardware on the AY chip. A fourth noise voice is generated in
the Main Loop by feeding random pulse width values to a PWM signal. The pitched
part of the noise signal is generated by directly loading a 5-bit frequency Hertz value
into the ledcSetup() function.

71

http://www.modland.net
http://www.waveguide.se/?article=ym-playback-on-the-ymz284
http://www.waveguide.se/?article=ym-playback-on-the-ymz284

72

The Main Loop (Core 1) has the job of reading consecutive AY register banks
from an AY register file every 50 milliseconds, translating and feeding frequency data
to the Core 0 tone generator and volume data to the four Multiplying DAC chips.

The function AY_SynthLoad() combines the the 4-bit Course Tune from the AY
registers and the 8-bit Fine tune for each voice to load into the 12-bit voice frequency
registers freqlsave, freq2save, and freq3save. The AY Enable register is used to turn
on or off each of the 3 square wave and the one noise voice source connected to the
inputs of the 4 Multiplying DACs . If a voice is “ON” then its 4-bit volume value from
the AY registers is used to address the 16 element array AY_Volume[] which translates
the 4-bit volume value to a 12-bit logarithmic volume fed to the 4 Multiplying DAC
chips.

The Main Loop also controls playback. Pot 1 is used to speed up or slow down
the playback around the normal 50 millisecond delay value used to time the register
bank loads. Switch 1 is used to jump back or Rewind the playback to any time point in
the AY register bank file, as set by pot 4. Switch 2 can stop playback at the current
notes.

The ESP32 has some not so obvious limitations. When pushed too far the
program will crash as exhibited by constantly resetting. Here are some of the
compromises found necessary to deal with some ESP32 limitations.

1. Originally, I planned to read one bank of AY registers at a time as needed, directly
from the SPIFFS memory. This caused the program to crash when attempted inside
either core. As it turns out, Timer and SPIFFS operations cannot run at the same
time. To accommodate this limitation, one user-chosen AY file is read from SPIFFS
memory and loaded into a large 2 dimensional SRAM memory array at the start of
Setup. This happens before Core 0 Tasks are started. The Main Loop then accesses
each bank of AY registers from this SRAM array instead of directly from the SPIFFS
flash memory.

2. Even though the ESP32 has much more Ram memory than any of the Arduinos, it
doesn’t turn out to have enough to hold some of the AY files which can be as big as
300KB. 100KB seemed to be the maximum size that would not crash the program.
It was possible to compress the file size somewhat by throwing out the 3 unused
envelope bytes thus cutting the AY bank size to 11 bytes instead of 14. If the size
was still over 100KB the end of the file was cut.

3. The forth voice is a PCM noise source that must be fed periodic random pulse
widths. When this operation was added to the Core 0 tasks the ESP would crash,
perhaps due to conflicting timers? This problem was solved by putting the
operation in the Main Loop instead. None of the AY example files actually used
this voice. The percussive sounds are instead frequency modulated low pitches.

73

4. On playing the AY file examples, the pitches were found to be two octaves too
low. One fix was to lower the Timer Interrupt time to 4 microseconds instead of 16.
That introduced some rough artifacts into the voices making them a little less clear. It
was pushing the timing of the software too close to the ESP32’s speed limitations.

Instead, the 12-bit pitch countdown values for the 3 voices were bit shifted to
the right by 2 bits, throwing out 2 lower bits. That made the voices two octaves higher

at the cost of losing some pitch accuracy since the pitch values are now 10 bits instead
of 12. That loss of accuracy will mainly affect the higher pitches.

N A A A A A A A A A A A A A~~~ A~~~

74

/*
ESP32 AY_Synth Setup

1. First in Setup, download Arcade game sound file from SPIFFS flash memory and load into AYArray[][]
2. In Core 0 create a timer interrupt to generate 3 squarewave voices (in Setup). ServiceVoices()

3. Create a PWM waveform for 4th voice. Feed it random pulse widths in Main Loop.

4. In Main Loop, control playback of sound file with sensor pots and switches.

i
AY registers files already placed into SPIFFS flash Memory

Arcade game AY register files from Daniel Tufvesson at
http://www.waveguide.se/?article=ym-playback-on-the-ymz284

file name.reg ---- file size ------ filesize/14 --> number of register banks in file
cybernoid.reg 279720, delta.reg 64540, outruni.reg 134400, sidewinder.reg 102270, stormlord.reg 260736
19980 4610 9600 7305 18624
*/
[]mmmmm s TYPE IN AY FILE NAME TO PLAY BACK HERE ~~~~~~~~~mmmmmmn s //

i

#include "FS.h"
#include "SPIFFS.h"

File AYFile;

#define INDEXMAX 10000 // Sorry, largest # of Register Banks that will compile without error
int FileSize =0; // Actual AY file size, read from SPIFFS AYFile.size()

int AYIndexMax = 0; // calculated from AY File size, limited to INDEXMAX

int AYIndex = 0;

uint8_t AYArray[INDEXMAX][11]; //Allot memory space for maximum size even if not needed

TaskHandle_t Task1;

//already declared in ESP32 library
//static const uint8_t SCL = 22; //Serial Lines to MCP4921 Multiplyer DACs
//static const uint8_t SDA = 21;

#include "MCP_DAC.h" //MCP_DAC Library by Rob Tillaart
MCP4921 myAYDAC1(SDA, SCL);
MCP4921 myAYDAC2(SDA, SCL);
MCP4921 myAYDACS3(SDA, SCL);
MCP4921 myAYDACA4(SDA, SCL);

[] ~mmmm e CONSTANTS/VARIALBES ~~~~~~~mmmmmn
// GIOP Pin Assignments

static const uint8_t POT1 = 36;
static const uint8_t POT2 = 39;
static const uint8_t POT3 = 34;
static const uint8_t POT4 = 35;

75

volatile short pot1;
volatile short pot2;
volatile short pot3;
volatile short pot4;

static const uint8_t SWITCH1 = 33; //Also Touch Sensor
static const uint8_t SWITCH2 = 32;

volatile bool switch1;
volatile bool switch2;

//already declared in ESP32 library
//static const uint8_t DAC1 = 25;
//static const uint8_t DAC2 = 26;

static const uint8_t V1 = 25; //Voice Pins to MCP4921 Multiplyer DACs
static const uint8_t V2 = 26;
static const uint8_t V3 = 12;
static const uint8_t V4 = 13;

static const uint8_t X1 = 27;
static const uint8_t X2 = 14;

static const uint8_t CS_V1 = 23; //Chip Select to MCP4921 Multiplyer DACs
static const uint8_t CS_V2 = 19;

static const uint8_t CS_V3 = 18;

static const uint8_t CS_V4 = 4;

static const uint8_t MIDI_TX2 = 17; //MIDI I/O, also LED on MIDI Out
static const uint8_t MIDI_RX2 = 16; //only on WROOM, won't work on WROVER ESP32s

static const uint8_t LED1 = 5;
static const uint8_t LED2 = 15;
static const uint8_t LED3 = 2; //Blue LED on 32S boards

uint16_t AY_Volume[16] = { //4-bit AY synth volume to 12-bit logarithmic volue
0, 10, 25, 51, 62, 102, 124, 205, 307, 512, 621, 1024, 1241, 2048, 2896, 4095 };

volatile uint16_t freq1 = 0;
volatile uint16_t freq2 = 0;
volatile uint16_t freq3 = 0;
volatile uint16_t freq4 = 0;

volatile uint16_t freq1save = 0;
volatile uint16_t freq2save = 0;
volatile uint16_t freq3save = 0;
volatile uint16_t freq4save = 0;

int count = 0;

volatile int pcm_freq = 440;

const int pcm_Channel0 = 0;

const int pcm_resolution = 12; // bits, 8 to 16.
volatile int pcm_width = 2000;

76

uint8_t AYNoiseFreq = 0;

uint8_t AYNoiseAmpA = 0;
uint8_t AYNoiseAmpB = 0;
uint8_t AYNoiseAmpC = 0;

// The hardware timer pointer
hw_timer_t * timer = NULL;

// Interrupt Routine. Run every 16 microseconds.
void onTimer(){ serviceVoices(); }

void setup() {
Serial.begin(115200);

AYFileLoad(); // AY game sound file load, be sure to enter file name above

myAYDAC1.begin
myAYDAC2.begin
myAYDAC3.begin
myAYDAC4.begin

Cs_v1
CS_V2
CS_V3
CS_v4

)
)

-9
= = —

// initialize Switches with pullup resistor
pinMode(SWITCH1, INPUT_PULLUP);
pinMode(SWITCHZ2, INPUT_PULLUP);

//initialize DAC chip selects, LOW select, unselect all
pinMode(CS_V1, OUTPUT);

digitalWrite(CS_V1, HIGH);

pinMode(CS_V2, OUTPUT);

digitalWrite(CS_V2, HIGH);

pinMode(CS_V3, OUTPUT);

digitalWrite(CS_V3, HIGH);

pinMode(CS_V4, OUTPUT);

digitalWrite(CS_V4, HIGH);

//initialize 4 digital voice inputs to Multiplyer DACs
pinMode(V1, OUTPUT);

digitalWrite(V1, HIGH);

pinMode(V2, OUTPUT);

digitalWrite(V2, HIGH);

pinMode(V3, OUTPUT);

digitalWrite(V3, HIGH);

pinMode(V4, OUTPUT);

digitalWrite(V4, HIGH);

//set DACs to maximum for Voice inputs
myAYDAC1.analogWrite(4095);
myAYDAC2.analogWrite(4095);
myAYDACS3.analogWrite(4095);
myAYDAC4.analogWrite(4095)

77

pinMode(LED1, OUTPUT);
pinMode(LED2, OUTPUT);
pinMode(LED3, OUTPUT);

digitalWrite(LED3, HIGH); //flash board's blue LED
delay(500);

digitalWrite(LED3, LOW);

delay(500);

digitalWrite(LED3, HIGH);

delay(500);

digitalWrite(LED3, LOW);

//create a task executed in Task1code() function, with priority 1 and executed on core 0
xTaskCreatePinnedToCore(
Task1code, /* Task function. */

"Task1", /* name of task (shown below). */

10000, /* Stack size of task */

NULL, /* parameter of the task */

1, /" priority of the task */

&Task1, /* handle to keep track of task */

0 /* pin task to coreQ*/

)
delay(500);

} //End of Setup

// Do a one time load of an AY performance file from previously loaded SPIFFS memory before this Task1
// Perform 16 microsecond timer interrupt function to toggle voice squarewaves at prescribed frequencies,
// Load Voice 4 Noise with random pulse widths only in Main Loop

// Also read sensor pots and switches for use in main loop

//Task1code:
void Task1code(void * pvParameters){
Serial.print("");
Serial.print("Task1 running on core ");
Serial.printin(xPortGetCorelD());

// V4 Noise Voice created by random pulse width in a PWM waveform
// configure PWM functionalities
ledcSetup(pcm_Channel0, pcm_freq, pcm_resolution);

// attach the PCM channel to V4
ledcAttachPin(V4, pcm_Channel0);

//' V1, V2, V3 voices are squarewaves. Freq set by a 4 microsecond timer interrupt routine.
// Initilise the timer interrupt.

// Parameter 1 is the timer we want to use. Valid: 0, 1, 2, 3 (total 4 timers)

// Parameter 2 is the prescaler. The ESP32 default clock is at 80MhZ.

// (look under Arduino Menu Tools/Flash Frequency) The value "80" will

// divide the clock by 80, giving us 1,000,000 ticks per second.

// Parameter 3 is true means this counter will count up, instead of down (false).

timer = timerBegin(0, 80, true);

// Attach the timer to the interrupt service routine named "onTimer".
// The 3rd parameter is set to "true" to indicate that we want to use the "edge" type (instead of "flat").
timerAttachinterrupt(timer, &onTimer, true);

// This is where we indicate the frequency of the interrupts.

// The value "16" (because of the prescaler we set in timerBegin) will produce

// one interrupt every 16 microseconds.

// The 3rd parameter is true so that the counter reloads when it fires an interrupt, and so we

// can get periodic interrupts (instead of a single interrupt).
timerAlarmWrite(timer, 16, true);

// Start the timer to perform the "onTimer" routine every 16 microseconds
timerAlarmEnable(timer);

for(;;){ //loop to update pot and switch variables for use in Main Loop

delay(100);
loadSensors();

} //End of for loop
} //End of Task1 code

void loop() { //Here is where Voice Performance is programmed for the 4 voices
AY_SynthLoad(AYIndex); // Load the software synth from one set of 8 AY_Synth registers at AYIndex
AYIndex++; // Increment index in preparatioon to load next set of 8 registers after some milliseconds

// PLAYBACK CONTROLS
if (AYIndex >= AYIndexMax) {AYIndex = 0;} // playback repeat (at end of file)

if (Iswitch1) { AYIndex = map(pot4, 0, 4095, 0, AYIndexMax); } // playback rewind (switch1) to any point (on pot2)

delay((pot1 >> 3) + 15); // playback speed set by pot 1

while (Iswitch2){ switch2 = digitalRead(SWITCH2); } // Stop playback at current notes with switch 2

ledcWrite(pcm_Channel0, random(2, 4093)); // generating noise voice
// doing this in Core 0 Task will crash the program. PWM timer vs Interrupt timer ??

} //end of Loop

void loadSensors(){ // load all current sensor values
pot1 = analogRead(POT1) ;
pot2 = analogRead(POT2) ;
pot3 = analogRead(POTS3);
pot4 = analogRead(POT4)

switch1 = digitalRead(SWITCH?1);
switch2 = digitalRead(SWITCH2);

79

void serviceVoices(){
--freq1; //toggle V1 at end of freq1 countdown
if (freq1 <= 0){
digitalWrite(V1, !digitalRead(V1));
freq1 = freqisave;
}
--freq2; //toggle V2 at end of freq2 countdown
if (freq2 <= 0){
digitalWrite(V2, !digitalRead(V2));
freq2 = freg2save;
}
--freg3; //toggle V3 at end of freq3 countdown
if (freq3 <= 0){
digitalWrite(V3, !digitalRead(V3));
freq3 = freq3save;
}
//load random pulse Width into PCM V4

// ledcWrite(pcm_ChannelQ, random(2, 4093)); //caused crash with timer interrupt?

void AY_SynthLoad(int index){ // Load the software synth from the 11 AY_Synth registers

freq1save = (AYArray[index][0] | ((AYArray[index][1] & OxF) << 8)) >> 2; // V1 Frequency set
freq2save = (AYArray[index][2] | ((AYArray[index][3] & OxF) << 8)) >> 2; // V2 Frequency set
freg3save = (AYArray[index][4] | ((AYArray[index][5] & OxF) << 8)) >> 2; // V3 Frequency set

if (AYArray[index][6] != AYNoiseFreq) { //V4 Noise Frequency set
AYNoiseFreq = AYArray[index][6] ;
ledcSetup(pcm_Channel0, AYNoiseFreq + 10, pcm_resolution);

}

if (bitRead(AYArray[index][7], 0)) { myAYDAC1.analogWrite(0); } // V1 Amp set
else { myAYDAC1.analogWrite(AY_Volume[AYArray[index][8] & B1111]); }

if (bitRead(AYArray[index][7], 1)) { myAYDAC2.analogWrite(0); } // V2 Amp set
else { myAYDAC2.analogWrite(AY_Volume[AYArray[index][9] & B1111]); }

if (bitRead(AYArray[index][7], 2)) { myAYDACS.analogWrite(0); } // V3 Amp set
else { myAYDAC3.analogWrite(AY_Volume[AYArray[index][10] & B1111]); }

if ({AYArray[index][7] & B00111000) == 0) { myAYDAC4.analogWrite(0); } // V4 Noise Amp set

else {
if(bitRead(AYArray[index][7], 3)){AYNoiseAmpA = 0; } else{AYNoiseAmpA = AYArray[index][8] & B1111; }
if(bitRead(AYArray[index][7], 4)){AYNoiseAmpB = 0; } else{AYNoiseAmpB = AYArray[index][9] & B1111; }
if(bitRead(AYArray[index][7], 5)){AYNoiseAmpC = 0; } else{AYNoiseAmpC = AYArray[index][10] & B1111; }

myAYDAC4.analogWrite(AY_Volume[(AYNoiseAmpA | AYNoiseAmpB) | AYNoiseAmpC]);
}

} //end of AY_SynthLoad

void PrintHex8(uint8_t data, uint8_t length) // prints 8-bit data in hex with leading zeroes
{
for (int i=0; i<length; i++) {
Serial.print("0x");
if (data<0x10) {Serial.print("0");}
Serial.print(data,HEX);

* AYFilelLoad

* Function to load AYArray from SPIFFS file

* AY Register Files are to be previously loaded into SPIFFS flash memory

* See sketch "ESP32AY_SPIFFS_ArcadeFile" for instruction how to do this

* The AY Register files used are from Daniel Tufvesson at

* http://www.waveguide.se/?article=ym-playback-on-the-ymz284

* These files are simple consecutive banks of 14 AY register bytes

* Normally one bank is loaded into the AY synth every 50ms.

* The last three registers in a bank are Envelope Bytes which are not normally used.

* The register file can then be compressed to one with 11 register bytes instead of 14

* The SPIFFS cannot be used simultaneously with the Timer Interrupts needed to create the voices
* Thus SPIFFS is used only to fill an SRAM 2-dimension array (AYArray[][]) with the file data

* SPIFFS file access is turned off before the timer interrupts are started

* Though the ESP32 is deemed to have lots of RAM space, experimentally, only array sizes less than about
*110KB (10K banks of 11 registers) will compile without error. Some of the AY files are too big

* and thus will be cut off to fit this smaller size when AYArray is loaded.

*

*/

void AYFileLoad(){
// Initialize SPIFFS
// SPIFFS access and TIMERS can't be run together without crashing
// AY file is loaded into an array and then closed before anything else is started

Serial.printin("Mounting SPIFFS");
if(lSPIFFS.begin(true)){
Serial.printin("Error while mounting SPIFFS");
return;

}

AYFile = SPIFFS.open(AYFilePath, FILE_READ);
Serial.print("");

Serial.print("Loading File ");
Serial.print(AYFile.name());

Serial.print(" File size: ");

FileSize = AYFile.size();

Serial.print(FileSize);

Serial.print(" File Index size: ");

AYIndexMax = int(FileSize/14); // number of register banks,
AYIndexMax = min(AYIndexMax, INDEXMAX); // number of AY banks, experimental compile maximum is 10k
Serial.printin(AYIndexMax);

if(AYFile.available()){
for(int x=0; x<AYIndexMax; x++){ //Register Bank index

for (int y=0; y<11; y++){ // load one Bank of AY registers
AYArray[x][y] = AYFile.read();
} //Endy

AYFile.read(); AYFile.read(); AYFile.read(); //Toss the 3 unused Envelope bytes

} //End x
} //End if available

AYFile.close(); //close AY file
delay(2000);
Serial.printin("Finished Loading -- File Closed");

/*
// 11 AY File register functions
Serial.print("A_FreqL A_FreqH B_FreqlL B_FreqH C_FreqL C_FreqH ");
Serial.print("N_Freq Enables A_Amp B_AMP C_AMP ");
Serial.printin("");
Serial.printin("");

for(int x=0; x<AYIndexMax; x++){ //Register Bank index
Serial.print("{ "); // print bank start

for (int y=0; y<11; y++){ // load one Bank of AY registers

PrintHex8(AYArray[x][y], 1); //print 13 hex values with cammas
Serial.print(", ");

} //Endy
Serial.print(" }, "); // print bank end and comma
Serial.printin(" "); // new line for new bank

} //End x

*/

} //End function AYFileLoad

83

84

