Gomputer Music

Volume 1 Number 4 %urﬂal

PIANO and STRING TONE GENERATION

SCORES PRINTED from ANALYSIS of SOUND
produced by traditional MUSIC INSTRUMENTS

LSI-11

MICROCOMPUTER CONTROLLED
DIGITAL SOUND SYNTHESIZER

A Portable Digital Sound Synthesis System
H. G. Alles
Bell Laboratories '
Murray Hills New Jersey 07974
A complete real time digital sound synthesis system has been
constructed. In one compact unit (42" w x 25" h x 18"d, weighing ~300

Ib). The following equipment has been included:

A. Digital Equipment Corp. LSI-11 based general purpose computing
system with:

1. Two floppy discs with DMA controllers
2. A 64k word mapable memory for Table and 1/0 buffering

3. An ASCII AT&T gaphics video-terminal with full ASCII
keyboard

B. A performer interface that samples and independently filters the
position of 256 input devices with ~7 bit resolution (~100-200
different positions) at a 250hz sampling rate. The input devices

include:

1. Two 61 key organ type manuals (the position of each key is
measured with 7 bit resolution, 250 times/sec)

2. 72 slide levers
3. Four 3-axis joysticks
4. A variety of other things
C. A 16 bit digital synthesizer operating at 30k samples/sec with:

1. 32 FM sinewave oscillators (.002 hz frequency resolution and 14
bit accuracy)

2. 32 FM oscillators that directly generate the first N (1 <N <127)

harmonics of the specified frequency.

3. 32 completely programmable second order digital filters (two
pole and two.zeros) that may be signal controlled

4. 32 AM (4 quadrant) multipliers
5. 256 envelope generators (linear or logarithmic)

6. A 2 second (48k word) digital reverberation and/or signal driven
lookup table with 64 programmable taps

7. An array of 192 accumulating registers for interconnecting all the
devices in any arbitrary way.

8. Four channels of 16 bit D/A output
9. Two channels of 14 bit A/D input

10. An array of 255 independent timers (1 ms resolution) with 16
FIFQO’s for sorting and storing timing events.

All the devices are bus interfaced to the LSI-11 computer and all the
control words appear in LSI-11 address space (6k words). Approximately
1400 IC's are used in the entire system.

All of the system components have been designed to complement each
other's capabilities. Special purpose hardware was constructed to perform
those tasks which are repetitive and time consuming (timekeeping and
performer input filtering).

Since there are no handwired connections between the input devices and
the synthesizer hardware, and since synthesizer interconnections are
accomplished through program loaded control registers, the whole
system may be used in a variety of ways. For example:

A. All the control parameters may be specified in real time and at
performance time.

B. Several files may be prepared in real time, but before the

performance. Then at performance time the files may be played with
some subset of the control parameters supplied during performance.

C . Files may be prepared and/or edited in nonreal time, incrementally
improving the original performance.

The total real time synthesis capacity depends, of course, on the type of
synthesis techniques and configuration used. The LSI-11 and floppy disc
multiple file system can support ~1000 parameter changes/sec. These
parameters may be used to specify frequencies, envelopes, configuration
changes, graphic displays, etc. This data rate should be able to generate
~100 reasonably complex notes per second.

This system is perhaps the first representative of a new generation of
musical instruments that combines in one relatively portable unit all the
hardware and interfaces necessary to produce in real time and in a
performance environment sounds approaching the complexity of a
modest orchestra.

SENSOR DATA

l L LIGHTS/SWITCH DATA
ALLES CONSOLE - o
J VIDEO
N i 15 1 TERMINAL*
a | =
[| | |
i ~
Cooboenea I | I. |/
’_
/ : (LS Lp L LIS, L L2 L
/ .'_' I ,,*1 T Iﬁ.!- J P ’ ’ /
N - ALLES CIRCUITRY
C] INTERFACE/VIDEO* 1

F

COLOR MONITOR

TIMERS/FIFO's *

v

WORK DISKS

*ADDED OR MODIFIED AT OBERLIN

DISKS

WINDOW MAP MEMORY

N E RN ENEY

REVERB

FILTER

Prorn b OSCILLATOR
PLoT * SYNTH*
SWITCH
SERIAL #3
LS|
MICROCOMPUTER
SERIAL #4
<

HEATH SYSTEM
DISKS *

SERIAL #1

SERIAL #2

n

INPUT/OUTPUT
) %
DACS ADCS

MAINFRAME

The Alles Machine Revisited

by

Gary Nelson, Director
and
John Talbert, Music Engineer

TIMARA Program
Conservatory of Music
Oberlin, Ohio
44074

1 Introduction

During the 1979-80 academic year, the Technology in Music and
Related Arts Program at Oberlin College underwent a review and
evaluation. As 1s our custom, a team of visiting referees was chosen
from experts in the field. That team included Max V. Mathews,
Director of Acoustics and Behavioral Research at Bell Laboratories in
Murray Hill, New Jersey. A happy consequence of Mathews' visit was
Oberlin's aquisition of the Alles Digital Sound Synthesizer.

In June 1980, we went to Bell Laboratories to consult with
Mathews and the synthesizer's designer, H. G. Alles. After several
weeks of asking questions and taking notes, we gathered up technical
documentation, circuit diagrams, and the machine itself and headed
back to Ohio to begin a challenging but rewarding period of what the
seal of Oberlin College calls "learning and labor".

2 System Architecture

The "Alles Machine" was demonstrated and discussed at the 1977
International Computer Music Conference in San Diego. A description
was published shortly thereafter in the COMPUTER MUSIC JOURNAL.

The system contains a DEC LSI-11 microcomputer which controls an
array of realtime synthesis modules and user interface devices. The
synthesizer was constructed on nine 10.5x8.5 wire-wrapped circuit
boards which are housed in a special leaved cage which facilitates
access for maintenance. The data registers of the synthesis modules
are mapped into the top 8k words of the LSI-11 memory space.

A detailed inventory of system components follows below. Items
with a single star indicate additions which have been made at
Oberlin. Double stars identify components of the original system
which we have substantially modified.

The general purpose computer consists of:

- 16-bit CPU with EIS and FIS

- 24kw of user memory (4kw added¥*)
- 64kw window-mapped memory

- 4 serial lines (2 lines added*)
- 2 RX-@1 disk drives (480kb)*

- 2 DMA disk drives (616kb) **

- ASCII terminal**

- RT-11 operating system¥*

Special peripherals include:

- Microvox text-to-speech synthesizer*

TI TMS-9918A video display processor (l6kb memory)*
with color monitor*

Strobe 100 incremental plotter*

Diablo daisy wheel printing terminal*

103

Synthesizer modules are:

- 4 16-bit digital-to—analog converters

2 14-bit analog-to-digital converters

32 sinewave oscillators

"harmonic" oscillators (sum of first N harmonics)
32 second-order filters

32 adder/multipliers

32 envelope/multipliers

256 ramp generators (linear or exponential)

64 delay lines (64kw memory)

640 element patch bay for synthesis modules

128 element patch bay for delay lines

26 trunk lines between patch bays

191 general-purpose patch cords

6 patch cords to DACs and ADCs

32 constant patch cords

1 white noise generator

255 down-counting timers with master control**
128 256-word ques (fifo) with hardware pointers*
256 256-word ques (fifo) for disk I/0 buffering¥*

[I T I
w
N

user interface we find:

-
o}
o+
(=2
[

2 6l-key keyboards**

128 controls (sliders, joysticks, pedals, etc.) **
64 function keys**

16 switches

64 indicator lights (32 added¥)

3 1Initial Hardware Modifications

It was understood that the instrument was given to us "as is"
and that we were to expect the problems associated with a prototype
which had led a very rough early life. Our estimate was that the
machine was approximately 75% functional on arrival in Oberlin.

Among the more serious hardware problems we addressed was the
distribution of loads on two switching power supplies. By rearranging
the modules we were able to equalize the loads and partition the
system so that the computer could be used for general development
without turning on the synthesizer. The ribbon cables which were used
for power transmission were replaced with a heavier grade of cable to
reduce power loss.

The sampling rate of the synthesizer was reduced from 30khz to
l16khz. The loss of frequency response was offset by gains in several
other areas. The higher clock rates of the original system approached
the performance limit of wirewrap boards and of some of the TTL
chips. 1In particular, the serial multiplier (AM2514) needed to be
culled by the designers at Bell Laboratories to find those chips
which would be fast enough for adequate operating margins. Our lower
sampling rate reduced the performance requirements of the multipliers
and, indeed, the whole system to a more reliable range. At the same
time we were able to replace many of the high power Schottky circuits
with equivalents requiring one-fifth the power.

We were able to remedy a serious timing problem by deriving the
synthesizer's two basic clock frequencies from a single crystal. The
28mhz and 18mhz system clocks in the original design left little room
for timing errors. They frequently drifted out of sync and caused
general confusion in the communications among the synthesizer
modules. The result was distinctly unmusical bursts of noise.

The Alles Machine was conceived as a portable system and
therefore was housed in a single cabin&t (weighing approximately 300
10

pounds) . However, each time the machine is moved, a period of
hardware failure follows. For the present, we have chosen to violate
this basic design criterion to achieve a measure of reliability. We
have separated the user console from the remaining components and
placed the latter in a cabinet which contains additional cooling fans
and noise isolation facilities.

4 Operating System

Concurrent with our program of hardware modifications, we
confronted the issue of software. At Bell Laboratories, the
programming of the Alles Machine was carried out with UNIX. Programs
were written in C, compiled on a PDP-11/45, and down-~loaded to the
LSI-11 for execution. Some work was done directly on the LSI-11 with
a version of UNIX which was not available in 1980 for proprietary
reasons.

It was clear from the outset that we should adopt a system which
conformed as much as possible to existing standards. To this end, we
purchased a pair of RX@#1l disk drives and the RT-11 operating system .
Since Oberlin has undergone a PASCAL boom of late, we realized
substantial student programming assistance by adding a
locally-modified version of that language to RT-11. PASCAL and LSI-11
assembly language now comprise our primary programming tools. A
package of programs for communicating with our SIGMA9 and VAX 11/784
mainframes completed our software development package.

5 Subsequent Hardware Modifications

A period of systems analysis and software prototyping followed
our initial repairs and modifications. We concluded that a number of
additional hardware changes were needed to facilitate programming and
to improve the performance of the system.

The original terminal combined text and graphics in an elegant
but nonstandard way. We chose to separate these functions by
converting the terminal to an ASCII standard and implementing color
graphics with a Texas Instruments TMS-9918A video display processor
and a separate color monitor. This change greatly simplified
communication with the RT-11 operating system and removed the 2kw
graphics bit map from the LSI-11 address space.

Several components of the synthesizer proved unreliable. The
user interface which included the keyboard and sliders was
particularly problematical. Each key and slider was an analog device
with its own "personality". It was necessary to calibrate them
frequently to produce even marginally predictable results. 1In the
original design [Alles, 1977d] the keyboard and slider positions were
converted into variable pulse width signals which were scanned by a
high frequency clock. The separation of the user console from the
computer and synthesizer required long cables which would not support
this high frequency. 1In our solution, the analog voltages from the
sensors are filtered, multiplexed, and transmitted over the long
cable to a single analog-to-digital converter. This more direct
design used lower frequency clocks with no loss of data speed. A
higher degree of accuracy and increased stability were also realized.

The limited address space of the LSI-11 continues to be a
serious weakness in the system. We improved our situation somewhat
with the addition of 4k words on a MXV11l-AA which fit into one of the
vacant slots of the LSI-11's card cage. This card also included two
additional serial lines which expanded our communication with the
mainframes and peripherals.

. It is often harder to figure out a complicated and
insufficiently documented circuit or program than to design or write

105

a new one. We found this to be the case with the DMA disk system
which came with the Alles Machine. The disks employed a nonstandard
format and a controller driven by a ROM program which we were unable
to decipher. A series of breakdowns led us to redesign around a more
standard controller and Format. We were able to design a DMA (direct
memory access) interface in which the disks can communicate directly
with a buffer without stealing cycles from the CPU to take over the
bus as was done in the original system.

Like the disks, the array of timers proved complicated and
required reworking into a simpler model. A single master clock was
provided to determine the rate at which 255 15-bit slave clocks would
decrement. The resolution of the clocks is continuously variable from
.25" to .@P1". Upon reaching zero, each clock may interrupt. An
interrupt handler may read the clock number from a que and a data
word from a register associated with that clock.

Queing of events became a central issue in our software
strategies. The keyboard/slider interface, the envelope ramps, and
the timers already contained hardware-driven ques which greatly
facilitated realtime programming. We determined that additional, more
general hardware ques would be useful. We were able to implement an
array of 128 such ques in the space left on the simplied timer board.
Each is a first-in-first-out (fifo) que with 256 entries and pointers
maintained by hardware. The pointers were designed to be controllabl
by software so that the ques might be used as lookup tables.

We are in the process of improving the performance of the DMA
disks by implementing an array of 256 similar ques which contain a
double porting architecture which permits access by the disk
controller without the use of the LSI-11 bus. Data blocks of 512
bytes will be I/O buffered with simple commands under software
control.

6 Programming Techniques

Our initial programming strategies followed very closely the
model of Lawson and Mathews [1977]. We have implemented all of the
their suggested modes of synthesizer control. These include:

- performance by keyboard player

- playback from a compiled score

- recording of performer input

- mixing of previous recordings with performer input
- algorithmic composition

Interaction with the performer is via keyboards, sliders, joy sticks,
foot pedals, and graphics. The software is menu-oriented and entirely
driven by interrupts. Operating modes and programs are selected with
an array of push buttons. In a "help" mode, the user may select
printed messages or messages spoken through a speech synthesizer. 1In
the help mode, pressing buttons and moving control devices evokes an
explanation of their function in the currently running program.
Verbose messages are available for the beginner and terse messages

may be selected by the more experienced user.

Recording and playback functions employ a network of ques,
buffers, and floppy disks to maintain a constant rate of data flow.
One disk functions as the input score and contains data which have
been recorded during a previous run or which have been assembled with
a composition program or music editor. The second disk is the output
score. It contains the result of a real-time run in which prerecorded
material may have been mixed with additional data supplied by the
user or by a composition algorithm. Both disks are in a format which
is compatible with text editing methods on the LSI-11 or on the
mainframe. 10 6

Real-time activity in the user interface (keyboards, sliders,
etc.) is transmitted through a hardware que which prevents data from
being lost due to overhead in the interrupt handler. The data in this
que informs the system of the device number and new data value which
corresponds to the real-time user action. It is this data along with
timing information that is recorded on the output score. Each datum
from the que and each time value is a 16-bit word. The capacity of
the disks thus permits more than 156,008 such actions to be recorded
in the score. On playback, this information may be assigned to
hardware timers and ques to simulate the realtime activity which
produced it. The timers may interrupt and identify themselves in a
que. A data word which is carried by each timer may then specifiy
which general que is to be read. The device data is passed to the
real-time play procedure and the timing information from the general
que is used to restart the timer in preparation for the next event in
the data stream.

The data from the user device que is actually two bytes, one for
the device number and one for the value. the device number 1is used to
identify a lookup table and the value is used as an index to that
table. It is practical, therefore, to translate the user devices into
any useful scale of 256 values. Since the lookup tables are not part
of the recorded score, they may be modified or replaced. The score
information may thus be interpreted differently in subsequent runs.

A primary design goal was to make timbre change dynamic so that
orchestration could become part of the performance. (Instrument
design remains a non-real-time activity.) Two files are used to this
end. An envelope file contains a collection of normalized envelopes.
Each envelope in the file is identified by number and each represents
a function of time relative to the duration of the note to which it
is applied. Data in the envelopes is a series of amplitude levels and
transition rates. The rates may represent either real time (for
attacks and releases, etc.) or relative time to provide elasticity.
Since the prescaling of envelopes intended for frequency changes is
somewhat different from that for amplitude, envelopes intended for
frequency are flagged with negative envelope numbers. When an
envelope file is called up at the beginning of a run, all of the
envelopes are read into memory, normalised, converted to logarithmic
form, and stored as a linked list for quick access during
performance. Envelope scaling is accomplished at performance time
throggh user devices or dynamic processes built into the instrument
patch.

A timbre file consists of a collection of records which identify
each timbre by number and which specify a list of envelopes which are
to be applied to the parameters of the synthesis algorithm. Each
algorithm or "patch" has its own expectations about the number of
envelopes required and the correspondence between components of the
patch and the order of envelope numbers presented in the timbre
record. Timbre selection is made during performance by means of a
slider. Up to 256 timbres may be available to the user. Changes in
timbre take place at the beginning of the next note by reassigning
envelope pointers. Notes in progress at the time of the timbre change
continue with the timbre that was in place at the attack points of
those notes.

We have decided for the present not to implement a patch
language like MUSIC V or MUSIC 368. Rather, we are coding patches in
PASCAL. A set of standard definitions of synthesizer registers and a
library of PASCAL procedures seem to meet our needs. In addition, the
requirement that our students deal with PASCAL follows the general
philosophy of the TIMARA Program that musicians who use computers
must attain a high level of programming expertise.

. The combination of envelope and timbre files, patch definition
in PASCAL, and real-time parametng%Faling provides us with a fine

degree of interactive timbral control.

7 Applications Programs

Our principal applications at present derive from a concern for
compatibility with programs running on our SIGMA9 mainframe. These
programs include 48-voice frequency modulation orchestra '(FMORCH), a
"timbre tester", and the Musical Program Library (MPL). MPL is
described elsewhere [Nelson, 1977]. Briefly, MPL is a package of
music functions written in APL. The principle strengths of MPL are
score editing and algorithmic composition. Since a large number of
students and faculty at Oberlin are already familiar with MPL, we
decided to provide a playback facility on the Alles Machine which
would represent a subset of the synthesis we do in software on the
SIGMA9. (A version of MPL without synthesis capabilities is in
preapartion for the VAX 11/780.) Data is transmitted between the
mainframe and the floppy disks of the LSI-11 in the score file format
mentioned earlier.

The Timbre Tester (TT) program is implemented in software on the
SIGMA9 and provides a workable level of interactive instrument
design. However, a similar program on the Alles Machine runs in
real-time., The data relating to timbre may be transmitted from the
Alles Machine to the SIGMA9 where it is translated into a format
suitable for generating the same timbre with FMORCH. A future plan is
a simulator of the Alles Machine on the mainframe. This would permit
us to generate music in which the complexity or density exceeds
real-time capabilities of the syntheslis hardware.

Other applications include an emulator which is capable of
digitizing or computing up to four seconds of sound into the memory
of the reverb unit. This sound may then be sampled at various
frequencies under keyboard control. Different sampling rates are
accomplished by driving the pointers of the reverb delay memories
with the phase registers of the hardware oscillators.

We plan to use the filter module to investigate vocoding and
linear predictive synthesis. Fourier and other standard analysis
techniques are also being implemented.

8 Conclusion

Much work remains before the Alles Machine can become a
production system at Oberlin. The task has been difficult, time
consuming, and often deeply frustrating. 1In spite of the confidence
expressed by Max Mathews in arranging the gift, we were not entirely
ready for the job. However, the oportunities brought about by the
presence of the Alles Machine on our campus has fostered a strong
working knowledge of such systems. It has enriched the TIMARA Program
in ways not yet measurable and given us the means to comprehend and,
perhaps, participate in future developments in computer music
synthesis,

We plan a series of user manuals and technical reports which
will explain our methods in more detail. For the present, we continue
our efforts to understand and apply this marvelous tool in our
primary vocation, the making of music.

9 References

H. G. Alles. "A Portable Digital Sound Synthesis System",
COMPUTER MUSIC JOURNAL, 1977a, I(4), 5-6.

H. G. Alles. "A 256-Channel Performer Input Device", COMPUTER
MUSIC JOURNAL, 19774, I(4), 14-15.
108

J. Lawson and M. Mathews. "Computer Program to Control a Digital
Real-Time Sound Synthesizer"™, COMPUTER MUSIC JOURNAL, 1977,
I1(4), 16-21.

G. Nelson. "MPL: A Program Library for Musical Data Processing”,
CREATIVE COMPUTING, March/April, 1977. 76-81.

