

The	Majestic	SID	Radio	
	
The	Majestic	SID	Radio	is	basically	a	classic	game	synthesizer	chip,	the	SID	
6581,	controlled	by	an	Arduino	Micro	microprocessor	combined	with	the	
“Radio	Music”	Euro	module.	
	
SID	History		(from	Wikipedia)	
	
The SID was devised by engineer Robert "Bob" Yannes, who later co-
founded the Ensoniq digital synthesizer company. The chip, like the first
product using it, the Commodore 64, was finished in time for
the Consumer Electronics Show in the first weekend of January 1982.
Even though Yannes was partly displeased with the result, his colleague
Charles Winterble said: "This thing is already 10 times better than
anything out there and 20 times better than it needs to be."

The MOS Technology 6581/8580 SID (Sound Interface Device) is the
built-in Programmable Sound Generator chip of Commodore's CBM-
II, Commodore 64, Commodore 128 and Commodore MAX
Machinehome computers. It was one of the first sound chips of its kind to
be included in a home computer prior to the digital sound revolution.

SID	synth	Basics	

The 6581 has three synthesizer “voices” which can be used
independently or in conjunction with each other (or external audio
sources) to create complex sounds. Each voice consists of a tone
oscillator/waveform generator, an envelope generator and an amplitude
modulator. The tone oscillator produces one of four waveforms at a
selected frequency. The volume of each oscillator is controlled by an
ADSR envelope generator. When triggered by a Gate signal, the ADSR
envelope generator creates programmable rates of increasing and
decreasing volume for the voice. All three voices plus an external audio
input can be routed through a programmable filter.

SID CHIP Specifications

Three separately programmable independent
audio oscillators (8 octave range, approximately 16 -
4000 Hz)

Four different waveforms per audio oscillator
(sawtooth, triangle, pulse, noise)

One programmable filter featuring low-pass, high-
pass and band-pass outputs. Bandpass with 6 dB/oct.
Lowpass/Highpass with 12 dB/octave. The different filter
modes are sometimes combined to produce additional
timbres, a notch-reject filter, for instance. Variable
Resonance.

Three attack/decay/sustain/release (ADSR) volume
controls (48dB exponential response range), one for each
audio oscillator. Attack Rate: 2ms-8sec, Decay Rate:
6ms-24sec, Sustain Level: 0-peak volume, Release Rate:
6ms-24sec.

Ring Modulation of one voice with another.

Oscillator sync with another oscillator.

Two 8-bit A/D converters (typically used for game
control paddles) for external pot controls

External audio input (for sound mixing with external signal
sources). Can be routed through the filter.

Random number/modulation generator

Master Volume Control

SID Chip Programmable Registers

There are 29 8-bit registers in the SID chip to control the generation of sound.

Each of the three Voices have 7 Write-only Registers:

Low Frequency (FreqLo) 8-bit fine tune
High Frequency (FreqHi) 8-bit course tune
Pulse Width Low (PulseWLo) 8-bit fine set of Pulse Waveform duty cycle
Pulse Width High (PulseWHi) 4-bit course set of Pulse Waveform duty cycle
Control Register (Cont) Waveform select, RingMod, Sync, and Envelope Gate
Envelope Attack/Decay (EnvAD) 4-bit Attack time set, 4-bit Decay time set
Envelope Sustain/Release (EnvSR) 4-bit Sustain Level, 4-bit Release time set

The Programmable Filter is controlled by 4 Write-only Registers:

Center Frequency Low (FCLo) 3-bit fine tune of filter’s cutoff frequency
Center Frequency High (FCHi) 8-bit course tune of the cutoff frequency
Resonance/Bypass (FiltRes) 4-bit Resonance set, Filter Bypass Ext/3/2/1
Mode/Volume (ModVol) 4-bit filter select (3Off/HP/BP/LP), 4-bit Output Volume

Finally, there are 4 Read-Only registers that the microprocessor can use to
modulate voice or filter values:

POTX (potX) 8-bit A/D value from an external PotX controller
POTY (potY) 8-bit A/D value from an external PotY controller
OSC3/Random (osc3_rand) 8-bit value from Voice 3 output, (modulate other voices?)
ENV3 (env3) 8-bit value from Voice 3’s Envelope, (modulate the filter frequency?)

More detailed descriptions can be found in the SID Datasheet.

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	

The	Arduino	Microprocessor	
	
An	Arduino	Pro	Micro	is	used	to	control	the	SID	chip	and	provide	analog	and	
digital	controllers	that	can	manipulate	the	SID	registers	and/or	your	
interactions	with	them.		On	the	back	of	the	Majestic	SID	Radio	is	a	USB	jack	used	
to	connect	the	Arduino	to	a	USB	port	on	any	desktop	computer.		Download	the	
Arduino	IDE	(Integrated	Development	Environment)	software	to	your	desktop	
computer	and	use	it	to	program	your	own	methods	of	interacting	with	the	SID	
synthesizer.			
	
In	addition	to	providing	complete	control	over	the	SID	synthesizer,	the	Arduino	
can	also	read	the	outputs	of	several	controller	devices.		These	include	two	toggle	
switches,	two	softpot/ribbon	controllers,	two	slide	pots,	a	multi-turn	pot,	and	a	
regular	rotary	pot.		The	SID	chip	itself	has	the	ability	to	read	two	external	pots.		
That	makes	a	total	of	two	digital	inputs	and	8	analog	inputs	that	can	be	
programmed	to	manually	manipulate	the	SID	synthesizer	parameters	or	your	
interaction	with	them.			
	
One	Arduino	output	pin,	D1,	has	been	assigned	to	modulate	and	distort	the	final	
output	signal	of	the	SID	chip.			D1	is	a	digital	output	pin,	either	high	or	low.		
When	low,	it	does	nothing	to	the	output	signal,	allowing	it	to	pass	unaffected.		
When	high,	it	can	go	between	completely	cutting	off	the	signal	to	mildly	
distorting	the	signal,	as	set	by	the	“Volume”	knob	on	the	front	panel.		For	the	
simplest	application,	program	the	Arduino	to	set	D1	high	and	then	use	the	
“Volume”	control	to	adjust	the	amount	of	signal	distortion	and	amplitude.		For	
more	drastic	effects,	use	the	Arduino	TONE	command	to	set	up	an	audio	or	sub	
audio	frequency	on	D1,	and	adjust	the	amount	of	modulation	with	the	front	
panel	“Volume”	control.	
	
Programming	the	SID	Synthesizer	
	
Programming	the	SID	Synthesizer	through	the	Arduino	requires	a	detailed	study	
of	the	SID	Datasheet	along	with	a	look	at	the	circuit	diagrams	showing	
specifically	how	the	SID	chip	is	connected	to	the	Arduino,	all	of	which	is	
provided	in	this	documentation.		Most	of	this	detail	work,	however,	is	not	
necessary	if	the	SID	program	template	is	used.		This	template	sets	up	all	the	

variables	and	functions	needed	to	program	the	SID	synthesizer.		Here	is	an	
overview	of	the	variables	and	functions	built	into	the	SID	Program	Template.	
	
	
SID	Voice	Variables	
	
Matrix	variables	for	the	SID	voice	registers.		The	range	of	values	are	shown	in	
parenthesis.		The	Voice	number	1,	2,	or	3	is	specified	within	the	matrix	brackets.	
	
Attack[voice]		(0	to	15)	
Decay[voice]		(0	to	15)	
Sustain[voice]		(0	to	15)	
Release[voice]		(0	to	15)	
	
FreqLo[voice]		(0	to	255)	
FreqHi[voice]		(0	to	255)	
PulseWLo[voice]		(0	to	255)	
PulseWHi[voice]		(0	to	15)	
Waveshape[voice]		(Load	by	adding	the	Waveshape	Constants	shown	below)	
	
	
SID	Constants	
	
**Constants	for	the	Waveshape		variable.		Add	the	constants	together	for	
multiple	selections,	for	example,		to	make	voice	2	ring	modulate	with	a	Sawtooth	
run:			
	

Waveshape[2]	=	SAWTOOTH	+	RINGMOD;	
	
NOISE	
PULSE	
SAWTOOTH	
TRIANGLE	
TEST	
RINGMOD	
SYNC	
	
**Constants	for	the	ldResFilt()	function.		This	function	sets	the	resonance	of	the	
filter,	but	it	also	determines	which	voices	are	sent	through	the	filter	and	which	

will	bypass	the	filter.		For	example,	to	send	only	Voices	1	and	2	through	the	filter	
and	set	the	resonance	to	half,	run	the	function:	
	

ldResFilt(FILT1	+	FILT2,	7);	
	
FILTEX		(send	the	External	Input	signal	through	the	filter,	else	bypass	it)	
FILT3		(send	Voice	3	through	the	filter,	else	bypass	it)	
FILT2		(send	Voice	2	through	the	filter,	else	bypass	it)	
FILT1		(send	Voice	1	through	the	filter,	else	bypass	it)	
	
**Constants	for	the	ldModeVol()	function.		This	function	sets	the	filter	type	
along	with	the	SID	output	volume.			For	example,	to	make	the	filter	a	lowpass	
and	set	the	output	volume	to	full,	run	this	function:	
	

ldModeVol(LP,	15);	
	
OFF3		(no	Voice	3	on	the	SID	output.		Useful	when	using	Voice	3	for	Ring	Mod)	
HP		(high	pass	filter)	
BP		(band	pass	filter)	
LP		(lowpass	filter)	
BP	+	LP		(band	reject	filter)	
	
	
SID	Controller	Variables	
	
Here	are	containers	for	the	four	SID	Read	Registers.		Use	the	function	
readRegisters()	to	fill	these	variables	with	current	values.	
	
potX	
potY	
osc3_rand	
env3	
	
Here	are	containers	for	the	controllers	on	the	Majestic	Radio	box	along	with	
their	usage,	including	Arduino	pin	numbers.		Use	the	function	loadSensors()	to	
load	all	of	them	with	current	values.	
	
ribbon1	=	analogRead(A0);	
ribbon2	=	analogRead(A1);	

slider1	=			analogRead(A2);	
slider2	=			analogRead(A3);	
middlePot	=	analogRead(A4);	
rightPot	=					analogRead(A5);	
switch1	=		digitalRead(0);	
switch2	=		digitalRead(13);	
	
	
	
TONEpin		
	
A	convenient	constant	for	the	modulation/distortion	pin.			To	set	it	high	run:			
digitalWrite(TONEpin,	HIGH);			To	turn	it	into	a	modulating	squarewave	run:	
tone(TONEpin,	frequency);			or			tone(TONEpin,	frequency,	duration);	
where	frequency	is	in	Hertz	and	duration	(optional)	is	in	milliseconds.	
	
	
	
Functions	
	
loadAddress(address);		low	level	selection	of	a	SID	register		
loadData(data);		low	level	loading	of	data	into	the	selected	SID	register	
	
resetSID();			load	zeros	into	all	the	SID	registers	
readRegisters();		fill	potX,	potY,	osc3_rand,	and	env3	with	current	values	
loadSensors();		read	all	8	controllers	and	fill	their	variables	with	current	data	
	
ldFreqLo(voice);		load	fine	tune	frequency	from	FreqLo[voice]	
ldFreqHi(voice);		load	course	tune	frequency	from	FreqHi[voice]	
ldPulseWLo(voice);		load	fine	pulse	width	from	PulseWLo[voice]	
ldPulseWHi(voice);		load	course	pulse	width	from	PulseWHi[voice]	
ldEnvAD(voice);		load	Attack[voice]	and	Decay[voice]	data	
ldEnvSR(voice);		load	Sustain[voice]	and	Release[voice]	data	
	
ldFCLo(data);		load	fine	tune	Filter	Cutoff	frequency	data	(0	-	7)	
ldFCHi(data);		load	course	tune	Filter	Cutoff	frequency	data	(0	–	255)	
ldFiltRes(filt,	res);		FILTEX/FILT3/FILT2/FILT1,	and	filter	resonance	(0-15)	
ldModeVol(mode,	vol);		3OFF/HP/BP/LP,	and	output	volume	(0-15)	
	

ldGate(voice,	gate);			
start	the	voice	ADSR	envelope	(Attack/Decay/Sustain	sections)	with	
gate=1,		or	end	the	voice	ADSR	envelope	(Release	section)	with	
gate=0.		Also	loads	the	Waveshape[voice]	matrix	data.	
	

	
	
	
Useful	Event	Timer	Functions		

	
unsigned	long	timestamp	=	0;		
void	timeStamp()	{timestamp	=	millis();		}	
//store	the	current	time	from	the	running	clock	millis()	
	
unsigned	long	dur()	{	return	(millis()	–	timestamp);	}			
//	returns	the	current	time	minus	the	last	stored	timestamp	
	
void	waitTill(unsigned	long	msec)	{	while(dur()	<	msec)	{	};		}	
//wait	till	the	time	duration	from	the	timestamp	equals	the	given	time	in	msec	
	
	
	 	 	 							
The	SID	External	Input	
	
The	SID	chip	incorporates	an	external	audio	input,	which	is	mixed	with	the	3	
oscillator	voices.		The	external	input	can	also	be	routed	through	the	SID	filter.		
The	choice	of	sending	each	of	the	four	signals	through	the	filter	or	bypassing	it	is	
set	up	in	the	FiltRes	register.			The	final	SID	output	is	then	a	mix	of	three	filtered	
or	unfiltered	SID	voices	plus	the	filtered	or	unfiltered	external	audio	input.		The	
volume	of	this	final	mix	is	controlled	by	the	master	volume	control	in	the	
ModVol	register.		In	the	Majestic	SID	Radio	box	this	final	mix	is	also	affected	by	
the	previously	described	Modulation/Distortion	D1	signal	controlled	by	the	
front	panel	“Volume”	pot.	
	
A	top	panel	Input	Jack	paired	with	an	Input	Volume	control	allows	any	audio	
signal	to	be	connected	to	the	SID	external	input.		(The	signal	should	be	no	more	
than	3	volts	peak	to	peak).		If	nothing	is	inserted	into	the	Input	jack,	the	jack	is	
normaled	to	one	of	two	built-in	sources	for	the	External	Input.			A	top	panel	red	

pushbutton	chooses	between	the	output	of	the	RadioMusic	Euro	module	or		an	
Electret	Microphone	positioned	under	the	top	panel	fabric.			
	
	
	
The	Radio	Music	Euro	Module	
	

The	RadioMusic	Module	is	a	looping	sample	playback	device.		Like a
radio, this module works on a series of banks and stations. Each of
the 16 banks can contain many different stations. Each station
is .raw audio file stored in a bank directory on the SD card. Choose a
bank by pressing and holding the RESET switch. Choose a station
by turning the STATION knob or plugging a voltage into TUNE.

The SD Card can be Fat16 or Fat32 formatted. It can contain up to
16 folders, which become the “banks” in the module, and are
labeled “0”, “1”, “2”, etc (without the quotes). Each folder can have
up to 75 soundfiles, which become the “stations” in the module,
though fewer files make them easier to select when using the
STATION knob. The soundfiles must be mono, 16bit, 44.1kHz rate.
They must also be headerless Wav files with the .raw suffix. Both
Amadeus Pro and Audacity apps can create these types of files.

More details of the RadioMusic operation can be found in the
included manual.

	

	
The	Majestic	SID	Radio	Panels	
	
The	cabinet	used	to	hold	the	SID	chip,	Arduino,	RadioMusic	and	Controllers	is	an	
antique	radio	with	a	brass	front	plate.			What	follows	are	descriptions	and	
illustrations	of	Radio	Panels.	
	
	
	

Front	Panel	
	
There	are	three	rotary	pots	on	the	brass	front	panel.		The	left	pot,	labeled	
“VOLUME”,	is	hardwired	to	control	the	amount	of	modulation/distortion	
originating	from	the	Arduino	D1	output	pin.	The	middle	control,	labeled	
“PHONO	RADIO”,	is	a	multi-turn	pot	connected	to	the	Arduino	Analog	Input	A4.		
The	right	control,	labeled	“TUNING”,	is	connected	to	the	Arduino	Analog	Input	
A5.	
	
Two	slide	pots	have	been	placed	in	the	radio’s	tuning	window.		The	upper	slide	
control	is	connected	to	the	Arduino	Analog	Input	A2	and	the	lower	one	is	
connected	to	A3.			
	
Top	of	Radio	
	
The	top	of	the	Radio	has	a	fabric	insert	under	which	a	speaker	is	centered.		To	
the	left	of	the	speaker,	under	the	fabric,	is	a	small	Electret	Microphone.		The	
close	positioning	of	the	speaker	and	microphone	allows	for	feedback	distortion	
controlled	by	the	Input	Volume	control.	
	
Also	on	top	of	the	cabinet	are	two	8-inch	Soft	Pots,	or	ribbon	controllers.		These	
are	connected	to	the	Arduino	Analog	inputs	A0	(back)	and	A1	(front).		The	
rotary	pot	to	the	left	of	each	ribbon	and	the	switch	to	the	right	require	some	
explanation.			
	
When	the	ribbon	controller	is	not	pressed,	there	is	no	connection	to	the	Arduino	
analog	input.		Usually	the	Arduino	input	is	merely	tied	to	GND	(zero	voltage)	
through	a	resistor	to	provide	a	zero	reading	when	the	controller	is	not	being	
used.		However,	it	was	decided	to	do	something	more	interesting	here	–	make	
the	grounded	resistor	variable	and	powered	or	not	through	a	switch.			
	
When	the	switch	is	engaged	and	the	ribbon	is	not	being	used,	the	pot	will	act	as	a	
full	range	controller.		When	the	ribbon	is	pressed,	the	pot	acts	as	an	offset	
adjustment	to	the	ribbon	readings.	
	
When	the	switch	is	disengaged	and	the	ribbon	is	not	being	used,	the	pot	is	just	a	
connection	to	Ground	producing	a	zero	output	no	matter	what	its	setting.		When	
the	ribbon	is	pressed,	the	pot	act	as	a	sort	of	output	range	adjustment	for	the	
ribbon	output.	

Top Slide Pot

Arduino A2

Lower Slide Pot

Arduino A3

“Volume”
Amount of Modulation/Distortion

from
Arduino D1 Output

“Phono Radio”
MultiTurn Pot

Arduino A4

“Tuning”
Right Pot

Arduino A5

	
Also	note	the	toggle	switch	between	the	two	ribbon	switches;	this	is	the	On/Off	
Power	switch	for	the	whole	radio	unit.	
	
Top	back	panel	
	
At	the	left	edge	of	the	top	pack	panel	is	an	Output	jack	to	allow	connection	of	the	
output	signal	to	any	sound	system.		When	no	connection	is	made	to	this	jack,	the	
output	signal	is	fed	to	the	“less	than	hi-fidelity”	internal	speaker.				
	
As	a	side	note,	a	small	circuit	board	kit	called	the	“Snooper”	is	part	of	the	Radio	
circuitry.		It	provides	the	LM386	audio	amp	to	power	the	internal	speaker,	and	
an	op-amp	preamp	circuit	to	boost	the	internal	microphone	signal.		
	
Next	in	line	on	the	left	is	a	volume	control	and	input	jack	for	the	External	Audio	
Input	to	the	SID	chip.		A	red	pushbutton	selects	between	the	RadioMusic	Module	
and	the	Electret	mic	for	the	Input	Jack’s	normaled	connection.			
	
Two	sets	of	8	LEDs	are	connected	to	various	internal	SID/Arduino	pins	as	
labeled	in	the	circuit	diagrams.			
	
In	front	of	the	LEDs,	the	RadioMusic	euro	module	is	mounted.		It	can	function	on	
its	own	using	its	own	output	and	input	jacks,	or	it	can	be	used	in	conjunction	
with	the	SID	chip	since	its	output	is	also	hardwired	to	the	External	Input		
selector.			
	
Finally,	two	toggle	switches	are	connected	to	the	Arduino	digital	input	pins	D0	
and	IO13	to	act	as	digital	(high	or	low)	controllers.		Please	note	that	D0	also	
function	as	the	USB	signal	input	when	programming	the	Arduino.		It	would	be	
helpful	to	leave	this	switch	in	the	Off	position	(0)	whenever	the	USB	is	connected	
for	programming.	
	
	

	
	 	 	 								

Output Jack
Normaled to Internal Speaker

External Input to SID
Jack and Volume Control

Normaled to Radio Music Euro or Internal Mic Two SID Control Pots
POTX, POTY

Red Selector Button
Radio Music or Internal Mic

Green LEDs Red LEDs

Radio Music Euro Module

Toggle Switches
Arduino D0, IO13

Back SoftPot/Ribbon Controller
Arduino A0

Front SoftPot/Ribbon Controller
Arduino A1

Adjust Pots for
Ribbons

Switch for
Ribbon

POWER SWITCH

Switch for
Ribbon

Internal Mic

	
	
	
	
	
	
	
	

	

Commodore	
SID	6581	
DataSheet	

	
http://www.waitingforfriday.com/?p=661	

	

	
	

Commodore SID 6581 Datasheet - WFFwiki

Introduction

This article is a reproduction of the original Commodore 6581 Sound Interface Device (SID) datasheet. I
made this by taking a photocopy of an original document and using OCR to capture the content, then the
document was hand-edited, formatted for mediawiki and reassembled here with (cleaned-up and
straightened) diagrams and tables.

The reason for this was that most sources on the web are low quality PDFs and, since the documents are
graphical copies of the original, they cannot be searched or indexed. The SID chip is a complex device, so
I hope anyone developing projects around this device will find this mediawiki format datasheet useful.

Since it was converted mainly by hand (OCR is not terribly accurate!) I would appreciate it if you could
notify me of any errors or omissions you find so I can make this as accurate as possible. If you would like
to make a copy of this document please note the Creative Commons licence referenced at the bottom of
the page.

Concept

The 6581 Sound Interface Device (SID) is a single-chip, 3-voice electronic music synthesizer/sound effects
generator compatible with the 65XX and similar microprocessor families. SID provides wide-range, high-
resolution control of pitch (frequency), tone color (harmonic content) and dynamics (volume). Specialized
control circuitry minimizes software overhead, facilitating use in arcade/home video games and low-cost
musical instruments.

Cutoff range: 30 Hz-12 kHz
12 dB/octave Rolloff
Low pass, Band pass, High pass, Notch outputs
Variable Resonance

6581 Pin Configuration

Description

The 6581 consists of three synthesizer “voices” which can be used independently or in conjunction with
each other (or external audio sources) to create complex sounds. Each voice consists of a Tone
Oscillator/Waveform Generator, an Envelope Generator and an Amplitude Modulator. The Tone Oscillator
controls the pitch of the voice over a wide range. The Oscillator produces four waveforms at the selected
frequency, with the unique harmonic content of each waveform providing simple control of tone color. The
volume dynamics of the oscillator are controlled by the Amplitude Modulator under the direction of the
Envelope Generator. When triggered, the Envelope Generator creates an amplitude envelope with
programmable rates of increasing and decreasing volume. In addition to the three voices, a programmable
Filter is provided for generating complex, dynamic tone colors via subtractive synthesis.

SID allows the microprocessor to read the changing output of the third Oscillator and third Envelope
Generator. These outputs can be used as a source of modulation information for creating vibrato,
frequency/filter sweeps and similar effects. The third oscillator can also act as a random number generator
for games. Two A/D converters are provided for interfacing SID with potentiometers. These can be used for
“paddles” in a game environment or as front panel controls in a music synthesizer. SID can process
external audio signals, allowing multiple SID chips to be daisy-chained or mixed in complex polyphonic
systems.

6581 SID Block Diagram

SID Control Registers

There are 29 eight-bit registers in SID which control the generation of sound. These registers are either
WRITE-only or READ-only and are listed below in Table 1.

Table 1

SID Register Description

Voice 1

Freq Lo/Freq Hi (Registers 00-01)

Together these registers form a 16-bit number which linearly controls the Frequency of Oscillator 1. The
frequency is determined by the following equation:

Fout = (Fn * Fclk/16777216) Hz

Where Fn is the 16-bit number in the Frequency registers and Fclk is the system clock applied to the Ø2
input (pin 6). For a standard 1.0 Mhz clock, the frequency is given by:

Fout = (Fn * 0.0596) Hz

A complete table of values for generating 8 octaves of the equally-tempered musical scale with concert A

(440 Hz) tuning is provided in Appendix A. It should be noted that the frequency resolution of SID is
sufficient for any tuning scale and allows sweeping from note to note (portamento) with no discernible
frequency steps.

PW Lo/PW Hi (Registers 02-03)

Together these registers form a 12-bit number (bits 4-7 of PW Hi are not used) which linearly controls the
Pulse Width (duty cycle) of the Pulse waveform on Oscillator 1. The pulse width is determined by the
following equation:

PWout = (PWn/40.95) %

Where PWn is the 12-bit number in the Pulse Width registers.

The pulse width resolution allows the width to be smoothly swept with no discernible stepping. Note that
the Pulse waveform on Oscillator 1 must be selected in order for the Pulse Width registers to have any
audible effect. A value of 0 or 4095 ($FFF) in the Pulse Width registers will produce a constant DC output,
while a value of 2048 ($800) will produce a square wave.

Control Register (Register 04)

This register contains eight control bits which select various options on Oscillator 1.

Gate (Bit 0)

The GATE bit controls the Envelope Generator for Voice 1. When this bit is set to a one, the Envelope
Generator is Gated (triggered) and the ATTACK/DECAY/SUSTAIN cycle is initiated. When the bit is reset to
a zero, the RELEASE cycle begins. The Envelope Generator controls the amplitude of Oscillator 1
appearing at the audio output, therefore, the GATE bit must be set (along with suitable envelope
parameters) for the selected output of Oscillator 1 to be audible. A detailed discussion of the Envelope
Generator can be found in Appendix B.

Sync (Bit 1)

The SYNC bit, when set to a one, Synchronizes the fundamental frequency of Oscillator 1 with the
fundamental frequency of Oscillator 3, producing “Hard Sync” effects. Varying the frequency of Oscillator 1
with respect to Oscillator 3 produces a wide range of complex harmonic structures from Voice 1 at the
frequency of Oscillator 3. In order for sync to occur Oscillator 3 must be set to some frequency other than
zero but preferably lower than the frequency of Oscillator 1. No other parameters of Voice 3 have any effect
on sync.

Ring Mod (Bit 2)

The RING MOD bit, when set to a one, replaces the Triangle waveform output of Oscillator 1 with a “Ring

Modulated” combination of Oscillators 1 and 3. Varying the frequency of Oscillator 1 with respect to
Oscillator 3 produces a wide range of non-harmonic overtone structures for creating bell or gong sounds
and for special effects. In order for ring modulation to be audible, the Triangle waveform of Oscillator 1
must be selected and Oscillator 3 must be set to some frequency other than zero. No other parameters of
Voice 3 have any effect on ring modulation.

Test (Bit 3)

The TEST bit, when set to a one, resets and locks Oscillator 1 at zero until the TEST bit is cleared. The
Noise waveform output of Oscillator 1 is also reset and the Pulse waveform output is held at a DC level.
Normally this bit is used for testing purposes, however, it can be used to synchronize Oscillator 1 to
external events, allowing the generation of highly complex waveforms under real-time software control.

Triangle Wave (Bit 4)

When set to a one, the Triangle waveform output of Oscillator 1 is selected. The Triangle waveform is low
in harmonics and has a mellow, flute-like quality.

Sawtooth Wave (Bit 5)

When set to a one, the Sawtooth waveform of Oscillator 1 is selected. The sawtooth waveform is rich in
even and odd harmonics and has a bright, brassy quality.

Square Wave (Bit 6)

When set to a one, the Pulse waveform output of Oscillator 1 is selected. The harmonic content of this
waveform can be adjusted by the Pulse Width registers, producing tone Qualities ranging from a bright,
hollow square wave to a nasal, reedy pulse. Sweeping the pulse width in real-time produces a dynamic
“phasing” effect which adds a sense of motion to the sound. Rapidly jumping between different pulse
widths can produce interesting harmonic sequences.

Noise (Bit 7)

When set to a one, the Noise output waveform of Oscillator 1 is selected. This output is a random signal
which changes at the frequency of Oscillator 1. The sound quality can be varied from a low rumbling to
hissing white noise via the Oscillator 1 Frequency registers. Noise is useful in creating explosions,
gunshots, jet engines, wind, surf and other un-pitched sounds, as well as snare drums and cymbals.
Sweeping the Oscillator frequency with Noise selected produces a dramatic rushing effect. One of the
output waveforms must be selected for Oscillator 1 to be audible, however it is NOT necessary to deselect
waveforms to silence the output of Voice 1. The amplitude of Voice 1 at the final output is a function of the
Envelope Generator only.

NOTE: The oscillator output waveforms are NOT additive. If more than one output waveform is selected

simultaneously, the result will be a logical ANDing of the waveforms. Although this technique can be used
to generate additional waveforms beyond the four listed above, it must be used with care. If any other
waveform is selected while Noise is on, the Noise output can “lock up”. If this occurs, the Noise output will
remain silent until reset by the TEST bit or by bringing /RES (pin 5) low.

Attack/Decay (Register 05)

Bits 4-7 of this register (ATK0-ATK3) select 1 of 16 ATTACK rates for the Voice 1 Envelope Generator. The
ATTACK rate determines how rapidly the output of Voice 1 rises from zero to peak amplitude when the
Envelope Generator is Gated. The 16 ATTACK rates are listed below in Table 2.

Bits 0-3 (DCY0-DCY3) select 1 of 16 DECAY rates for the Envelope Generator. The DECAY cycle follows
the ATTACK cycle and the DECAY rate determines how rapidly the output falls from the peak amplitude to
the selected SUSTAIN level. The 16 DECAY rates are listed in Table 2.

Attack Rate Release Rate

DEC HEX (Time/Cycle) (Time/Cycle)

0 (0) 2 mS 6 mS

1 (1) 8 mS 24 mS

2 (2) 16 mS 48 mS

3 (3) 24 mS 72 mS

4 (4) 38 mS 114 mS

5 (5) 56 mS 168 mS

6 (6) 68 mS 204 mS

7 (7) 80 mS 240 mS

8 (8) 100 mS 300 mS

9 (9) 250 mS 750 mS

10 (A) 500 mS 1.5 S

11 (B) 800 mS 2.4 S

12 (C) 1 S 3 S

13 (D) 3 S 9 S

14 (E) 5 S 15 S

15 (F) 8 S 24 S

Table 2

NOTE: Envelope rates are based on a 1.0 Mhz Ø2 clock. For other Ø2 frequencies, multiply the given rate
by 1 Mhz / Ø2. The rates refer to the amount of time per cycle. For example, given an ATTACK value of 2,
the ATTACK cycle would take 16 mS to rise from zero to peak amplitude. The DECAY/RELEASE rates
refer to the amount of time these cycles would take to fall from peak amplitude to zero.

Sustain/Release (Register 06)

Bits 4-7 of this register (STN0-STN3) select 1 of 16 SUSTAIN levels for the Envelope Generator. The
SUSTAIN cycle follows the DECAY cycle and the output of Voice 1 will remain at the selected SUSTAIN
amplitude as long as the Gate bit remains set. The SUSTAIN levels range from zero to peak amplitude in
16 linear steps, with a SUSTAIN value of 0 selecting zero amplitude and a SUSTAIN value of 15 (#F)
selecting the peak amplitude.

A SUSTAIN value of 8 would cause Voice 1 to SUSTAIN at an amplitude one-half the peak amplitude
reached by the ATTACK cycle.

Bits 0-3 (RLS0-RLS3) select 1 of 16 RELEASE rates for the Envelope Generator. The RELEASE cycle
follows the SUSTAIN cycle when the Gate bit is reset to zero. At this time, the output of Voice 1 will fall
from the SUSTAIN amplitude to zero amplitude at the selected RELEASE rate. The 16 RELEASE rates are
identical to the DECAY rates.

NOTE: The cycling of the Envelope Generator can be altered at any point via the Gate bit. The Envelope
Generator can be Gated and Released without restriction. For example, if the Gate bit is reset before the
envelope has finished the ATTACK cycle, the RELEASE cycle will immediately begin, starting from
whatever amplitude had been reached. If the envelope is then Gated again (before the RELEASE cycle
has reached zero amplitude), another ATTACK cycle will begin, starting from whatever amplitude had been
reached. This technique can be used to generate complex amplitude envelopes via real-time software
control.

Voice 2

Registers 07-$0D control Voice 2 and are functionally identical to registers 00-06 with these exceptions:

When selected, SYNC synchronizes Oscillator 2 with Oscillator 1.

When selected, RING MOD replaces the Triangle output of Oscillator 2 with the ring modulated
combination of Oscillators 2 and 1.

Voice 3

Registers $0E-$14 control Voice 3 and are functionally identical to registers 00-06 with these exceptions:

When selected, SYNC synchronizes Oscillator 3 with Oscillator 2.

When selected, RING MOD replaces the Triangle output of Oscillator 3 with the ring modulated
combination of Oscillators 3 and 2.

Typical operation of a voice consists of selecting the desired parameters: frequency, waveform effects
(SYNC, RING MOD) and envelope rates, then gating the voice whenever the sound is desired. The sound
can be sustained for any length of time and terminated by clearing the Gate bit. Each voice can be used
separately, with independent parameters and gating, or in unison to create a single, powerful voice. When
used in unison, a slight detuning of each oscillator or tuning to musical intervals creates a rich, animated
sound.

Filter

FC Lo/FC Hi (Registers $15, $16)

Together these registers form an 11-bit number (bits 3-7 of FC LO are not used) which linearly controls the
Cutoff (or Center) Frequency of the programmable Filter. The approximate Cutoff Frequency ranges
between 30Hz and 10KHz with the recommended capacitor values of 2200pF for CAP1 and CAP2. The
frequency range of the Filter can be altered to suit specific applications. Refer to the Pin Description
section for more information.

RES/Filt (Register $17)

Bits 4-7 of this register (RES0-RES3) control the Resonance of the Filler, resonance of a peaking effect
which emphasizes frequency components at the Cutoff Frequency of the Filter, causing a sharper sound.
There are 16 Resonance settings ranging linearly from no resonance (0) to maximum resonance (15 or
#F).

Bits 0-3 determine which signals will be routed through the Filter:

Filt 1 (Bit 0)

When set to a zero, Voice 1 appears directly at the audio output and the Filter has no effect on it. When set
to a one, Voice 1 will be processed through the Filter and the harmonic content of Voice 1 will be altered
according to the selected Filter parameters.

Filt 2 (Bit 1)

Same as bit 0 for Voice 2.

Filt 3 (Bit 2)

Same as bit 0 for voice 3.

Filtex (Bit 3)

Same as bit 0 for External audio input (pin 26).

Mode/Vol (Register $18)

Bits 4-7 of this register select various Filter mode and output options:

LP (Bit 4)

When set to a one, the low Pass output of the Filter is selected and sent to the audio output. For a given
Filter input Signal, all frequency components below the Filter Cutoff Frequency are passed unaltered, while
all frequency components above the Cutoff are attenuated at a rate of 12 dB/Octave. The low Pass mode
produces full-bodied sounds.

BP (Bit 5)

Same as bit 4 for the Band Pass output. All frequency components above and below the Cutoff are
attenuated at a rate of 6 dB/Octave. The Band Pass mode produces thin, open sounds.

HP (Bit 6)

Same as bit 4 for the High Pass output. All frequency components above the Cutoff are passed unaltered,
while all frequency components below the Cutoff are attenuated at a rate of 12 dB/Octave. The High Pass
mode produces tinny, buzzy sounds.

3 OFF (Bit 7)

When set to a one, the output of Voice 3 is disconnected from the direct audio path. Setting Voice 3 to
bypass the Filter (FILT 3 = 0) and selling 3 OFF to a one prevents Voice 3 from reaching the audio output.
This allows Voice 3 to be used for modulation purposes without any undesirable output.

NOTE: The Filter output modes ARE additive and multiple Filter modes may be selected simultaneously.

For example, both LP and HP modes can be selected to produce a Notch (or Band Reject) Filter response.
In order for the Filter to have any audible effect, at least one Filter output must be selected and at least one
Voice must be routed through the Filter. The Filter is, perhaps, the most important element in SID as it
allows the generation of complex tone colors via subtractive synthesis. The Filter is used to eliminate
specific frequency components from a harmonically-rich input signal). The best results are achieved by
varying the Cutoff Frequency in real-time.

Bits 0-3 (VOL0-VOL3) select 1 of 16 overall Volume levels for the final composite audio output. The output
volume levels range from no output (0) to maximum volume (15 or #F) in 16 linear steps. This control can
be used as a static volume control for balancing levels in multi-chip systems or for creating dynamic
volume effects, such as Tremolo. Some Volume level other than zero must be selected in order for SID to
produce any sound.

Misc

POTX (Register $19)

This register allows the microprocessor to read the position of the potentiometer tied to POTX (pin 24), with
values ranging from 0 at minimum resistance, to 255 (#FF) at maximum resistance. The value is always
valid and is updated every 512 Ø2 clock cycles. See the Pin Description section for information on post and
capacitor values.

POTY (Register $1A)

Same as POTX for the pot tied to POTY (pin 23).

OSC 3/RANDOM (Register $1B)

This register allows the microprocessor to read the upper 8 output bits of Oscillator 3. The character of the
numbers generated is directly related to the waveform selected. If the Sawtooth waveform of Oscillator 3 is
selected, this register will present a series of numbers incrementing from 0 to 255 ($FF) at a rate
determined by the frequency of Oscillator 3. If the Triangle waveform is selected, the output will increment
from 0 up to 255, then decrement down to 0. If the Pulse waveform is selected, the output will jump
between 0 and 255. Selecting the Noise waveform will produce a series of random numbers, therefore, this
register can be used as a random number generator for games. There are numerous timing and
sequencing applications for the OSC 3 register, however, the chief function is probably that of a modulation
generator. The numbers generated by this register can be added, via software, to the Oscillator or Filter
Frequency registers or the Pulse Width registers in real-time. Many dynamic effects can be generated in
this manner. Siren-like sounds can be created by adding the OSC 3 Sawtooth output to the frequency
control of another oscillator. Synthesizer “Sample and Hold” effects can be produced by adding the OSC 3
Noise output to the Filter Frequency control registers. Vibrato can be produced by selling Oscillator 3 to a
frequency around 7 Hz and adding the OSC 3 Triangle output (with proper scaling) to the Frequency
control of another oscillator. An unlimited range of effects are available by altering the frequency of
Oscillator 3 and scaling the OSC 3 output. Normally, when Oscillator 3 is used for modulation, the audio
output of Voice 3 should be eliminated (3 OFF = 1).

ENV 3 (Register $1C)

Same as OSC 3, but this register allows the microprocessor to read the output of the Voice 3 Envelope
Generator. This output can be added to the Filler Frequency to produce harmonic envelopes, WAH WAH,

and similar effects. “Phaser” sounds can be created by adding this output to the frequency control registers
of an oscillator. The Voice 3 Envelope Generator must be gated in order to produce any output from this
register. The OSC 3 register, however, always reflects the changing output of the oscillator and is not
affected in any way by the Envelope Generator.

SID Pin Description

CAP1A, CAP1B (Pins 1,2)/CAP2A, CAP2B Pins 3,4)

These pins are used to connect the two integrating capacitors required by the programmable Filter. C1
connects between pins 1 and 2, C2 between pins 3 and 4. Both capacitors should be the same value.
Normal operation of the Filter over the audio range (approximately - 30 Hz-12 KHz) is accomplished with a
value of 2200 pF for C1 and C2. Polystyrene capacitors are preferred. In complex polyphonic systems,
where many SID chips must track each other, matched capacitors are recommended. The frequency range
of the Filter can be tailored to specific applications by the choice of capacitor values. For example, a low-
cost game may not require full high-frequency response, In this case, larger values for C1 and C2 could be
chosen to provide more control over the bass frequencies of the Filter. The approximate maximum Cutoff
Frequency of the Filter is given by:

FCmax = 2.6E-5/C

Where C is the capacitor value. The range of the Filter extends approximately 9 octaves below the
maximum Cutoff Frequency.

/RES (Pin 5) -This TTL-level input is the reset control for SID. When brought low for at least ten Ø2 cycles,
all internal registers are reset to zero and the audio output is silenced. This pin is normally connected to the
reset line of the microprocessor or a power-on-clear circuit.

Ø2 (Pin 6) -This TTL-level input is the master clock for SID. All oscillator frequencies and envelope rates
are referenced to this clock. Ø2 also controls data transfers between SID and the microprocessor. Data can
only be transferred when Ø2 is high. Essentially, Ø2 acts as a high-active chip select as far as data
transfers are concerned. This pin is normally connected to the system clock, with a nominal operating
frequency of 1.0 MHz.

R/W (Pin 7) -This TTL-level input controls the direction of data transfers between SID and the
microprocessor. If the chip select conditions have been met, a high on this line allows the microprocessor
to Read data from the selected SID register and a low allows the microprocessor to Write data into the
selected SID register. This pin is normally connected to the system Read/Write line.

/CS (Pin 8) -This TTL-level input is a low active Chip select which controls data transfers between SID and
the microprocessor. /CS must be low for any transfer. A Read from the selected SID register can only occur
if /CS is low, Ø2 is high and R/W is high. A Write to the selected SID register can only occur if /CS is low,

Ø2 is high and R/W is low. This pin is normally connected to address decoding circuitry, allowing SID to
reside in the memory map of a system.

A0-A4 (Pins 9-13) -These TTL-level inputs are used to select one of the 29 SID registers. Although
enough addresses are provided to select 1 of 32 registers, the remaining three register locations are not
used. A Write to any of these three locations is ignored and a Read returns invalid data. These pins are
normally connected to the corresponding address lines of the microprocessor so that SID may be
addressed in the same manner as memory.

GND (Pin 14) -For best results, the ground line between SID and the power supply should be separate
from ground tines to other digital circuitry. This will minimize digital noise at the audio output.

D0-D7 (Pins 15-22) -These bidirectional lines are used to transfer data between SID and the
microprocessor. They are TTL compatible in the output mode and capable of driving 2 TTL loads in the
output mode. The data buffers are usually in the high-impedance off state. During a Write operation, the
data buffers remain in the off (input) state and the microprocessor supplies data to SID over these lines.
During a Read operation, the data buffers turn on and SID supplies data to the microprocessor over these
lines. The pins are normally connected to the corresponding data lines of the microprocessor.

POTX, POTY (Pins 24, 23) -These pins are inputs to the A/D converters used to digitize the position of
potentiometers. The conversion process is based on the time constant of a capacitor tied from the POT pin
to ground, charged by a potentiometer tied from the POT pin to +5 volts. The component values are
determined by

RC = 4.7E-4

Where R is the maximum resistance of the pot and C is the capacitor.

The larger the capacitor, the smaller the POT value jitter. The recommended values for R and C are 470
KOhms and 1000 pF.

Note that a separate pot and cap are required for each POT pin.

Vcc (Pin 25) - As with the GND line, a separate +5 VDC line should be run between SID Vcc and the
power supply in order to minimize noise. A bypass capacitor should be located close to the pin.

Ext In (Pin 26) -This analog input allows external audio signals to be mixed with the audio output of SID or
processed through the Filter. Typical sources include voice, guitar and organ. The input impedance of this
pin is in the order of 100 KOhms. Any signal applied directly to the pin should ride at DC level of 6 volts and
should not exceed 3 volts p-p. In order to prevent any interference caused by DC level differences, external
signals should be AC-coupled to EXT IN by an electrolytic capacitor in the 1-10uF range. As the direct
audio path (FILTEX = 0) has unity gain, EXT IN can be used to mix outputs of many SID chips by daisy-
chaining. The number of chips that can be chained in this manner is determined by the amount of noise

and distortion allowable at the final output. Note that the output Volume control will affect not only the three
SID voices, but also any external inputs.

Audio Out (Pin 27) -This open-source buffer is the final audio output of SID, comprised of the three SID
voices, the Filter and any external input. The output level is set by the output Volume control and reaches a
maximum of approximately 3 volts p-p at a 6 volt DC level. A source resistor from AUDIO OUT to ground is
required for proper operation. The recommended resistance is 1 KOhm for a standard output impedance.
As the output of SID rides at a 6 volt DC level, it should be AC-coupled to any audio amplifier with an
electrolytic capacitor in the 1-10uF range.

Vdd (Pin 28) - As with Vcc, a separate + 12 VDC fine should be run to SID Vdd and a bypass capacitor
should be used.

See Appendix C for typical SID application.

6581 SID Characteristics

Absolute Maximum Ratings

Supply Voltage, Vdd -0.3 VDC to +17 VDC
Supply Voltage, Vcc -0.3 VDC to +7 VDC
Input Voltage (analog). Vina -0.3 VDC to +17 VDC
Input Voltage (digital), Vind -0.3 VDC to +7 VDC
Operating Temperature, Ta 0° C to +70° C
Storage Temperature, Tstg -55° C to +150° C

All inputs contain protection circuitry to prevent damage due to high static discharges. Care should be
exercised to prevent unnecessary application of voltages in excess of the allowable limits.

Comment

Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. These are stress ratings only. Functional operation of this device at these or any other conditions
above those indicated in the operational sections of this specification is not implied and exposure to
absolute maximum rating conditions for extended periods may affect device reliability.

6581 (SID) Timing

Appendix A - Equal-Tempered Musical Scale Values

The following table lists the numerical values which must be stored in the SID Oscillator frequency control
registers to produce the notes of the equal-tempered musical scale. The equal-tempered scale consists of
an octave containing 12 semitones (notes): C, D, E, F, G, A, B and C#, D#, F#, G#, A#. The frequency of
each semitone is exactly the 12th root of 2 times the frequency of the previous semitone. The table is
based on a Ø2 = clock of 1.0 Mhz. Refer to the equation given in the Register Description for use of other
master clock frequencies. The scale selected is concert pitch, in which A4 = 440 Hz. Transpositions of this
scale and scales other than the equal-tempered scale are also possible.

Musical Freq Osc Fn Osc Fn Musical Freq Osc Fn Osc Fn

Note (Hz) (Decimal) (Hex) Note (Hz) (Decimal) (Hex)

1 C0$ 17.32 291 0123 49 C4$ 277.18 4650 122A

2 D0 18.35 308 0134 50 D4 293.66 4927 133F

3 D0$ 19.44 326 0146 51 D4$ 311.13 5220 1464

4 E0 20.60 346 015A 52 E4 329.63 5530 159A

5 F0 21.83 366 016E 53 F4 349.23 5859 16E3

6 F0$ 23.12 388 0184 54 F4$ 370.00 6207 183F

7 G0 24.50 411 018B 55 G4 392.00 6577 1981

8 G0$ 25.96 435 01B3 56 G4$ 415.30 6968 1B38

9 A0 27.50 461 01CD 57 A4 440.00 7382 1CD6

10 A0$ 29.14 489 01E9 58 A4$ 466.16 7821 1E80

11 B0 30.87 518 0206 59 B4 493.88 8286 205E

12 C1 32.70 549 0225 60 C5 523.25 8779 224B

13 C1$ 34.65 581 0245 61 C5$ 554.37 9301 2455

14 D1 36.71 616 0268 62 D5 587.33 9854 267E

15 D1$ 38.89 652 028C 63 D5$ 622.25 10440 28C8

16 E1 41.20 691 02B3 64 E5 659.25 11060 2B34

17 F1 43.65 732 02DC 65 F5 698.46 11718 2DC6

18 F1$ 46.25 776 0308 66 F5$ 740.00 12415 307F

19 G1 49.00 822 0336 67 G5 783.99 13153 3361

20 G1$ 51.91 871 0367 68 G5$ 830.61 13935 366F

21 A1 55.00 923 039B 69 A5 880.00 14764 39AC

22 A1$ 58.27 978 03D2 70 A5$ 932.33 15642 3D1A

23 B1 61.74 1036 040C 71 B5 987.77 16572 40BC

24 C2 65.41 1097 0449 72 C6 1046.50 17557 4495

25 C2$ 69.30 1163 048B 73 C6$ 1108.73 18601 48A9

26 D2 73.42 1232 04D0 74 D6 1174.66 19709 4CFC

27 D2$ 77.78 1305 0519 75 D6$ 1244.51 20897 518F

28 E2 82.41 1383 0567 76 E6 1318.51 22121 5669

29 F2 87.31 1465 05B9 77 F6 1396.91 23436 5B8C

30 F2$ 92.50 1552 0610 78 F6$ 1479.98 24830 60FE

31 G2 98.00 1644 066C 79 G6 1567.98 26306 6602

32 G2$ 103.83 1742 06CE 80 G6$ 1661.22 27871 6CDF

33 A2 110.00 1845 0735 81 A6 1760.00 29528 7358

34 A2$ 116.54 1955 07A3 82 A6$ 1864.65 31234 7A34

35 B2 123.47 2071 0817 83 B6 1975.53 33144 8178

36 C3 130.81 2195 0893 84 C7 2093.00 35115 892B

37 C3$ 138.59 2325 0915 85 C7$ 2217.46 37203 9153

38 D3 146.83 2463 099F 86 D7 2349.32 39415 99F7

39 D3$ 155.56 2610 0A32 87 D7$ 2489.01 41759 A31F

40 E3 164.81 2765 0ACD 88 E7 2637.02 44242 ACD2

41 F3 174.61 2930 0B72 89 F7 2793.83 46873 B719

42 F3$ 185.00 3104 0C20 90 F7$ 2959.95 49660 C1FC

43 G3 196.00 3288 0C08 91 G7 3135.96 52613 C085

44 G3$ 207.65 3484 0D9C 92 G7$ 3322.44 55741 0980

45 A3 220.00 3691 0E6B 93 A7 3520.00 59056 E6B0

46 A3$ 233.08 3910 0F46 94 A7$ 3729.31 62567 F467

47 B3 246.94 4143 102F 95 B7 3951.06 *66288 *1F2F0

Although the table above provides a simple and quick method for generating the equal-tempered scale, it is
very memory inefficient as it requires 192 bytes for the table alone. Memory efficiency can be improved by
determining the note value algorithmically. Using the fact that each note in an octave is exactly half the
frequency of that note in the next octave, the note look-up table can be reduced from 96 entries to 12
entries, as there are 12 notes per octave. If the 12 entries (24 bytes) consist of the 16-bit values for the
eighth octave (C7 through B7), then notes in lower octaves can be derived by choosing the appropriate
note in the eighth octave and dividing the 16-bit value by two for each octave of difference. As division by
two is nothing more than a right-shift of the value, the calculation can easily be accomplished by a simple
software routine. Although note B7 is beyond the range of the Oscillators this value should still be included
in the table for calculation purposes (the MSB of B7 would require a special software case, such as
generating this bit in the CARRY before shifting). Each note must be specified in a form which indicates
which of the 12 semitones is desired, and which of the eight octaves the semitone is in. Since four bits are
necessary to select 1 of 12 semitones and three bits are necessary to select 1 of 8 octaves, the information
can fit in one byte, with the lower nybble selecting the semitone (by addressing the look-up table) and the

upper nybble being used by the division routine to determine how many times the table value must be right-
shifted.

Appendix B - SID Envelope Generators

The four-part ADSR (ATTACK, DECAY, SUSTAIN, RELEASE) envelope generator has been proven in
electronic music to provide the optimum trade-off between flexibility and ease of amplitude control.
Appropriate selection of envelope parameters allows the simulation of a wide range of percussion and
sustained instruments. The violin is a good example of a sustained instrument. The violinist controls the
volume by bowing the instrument. Typically, the volume builds slowly, reaches a peak, then drops to an
intermediate level. The violinist can maintain this level for as long as desired, then the volume is allowed to
slowly die away. A “snapshot” of this envelope is shown below:

This volume envelope can be easily reproduced by the ADSR as shown below, with typical envelope rates:

Note that the tone can be held at the intermediate SUSTAIN level for as long as desired. The tone will not
begin to die away until GATE is cleared. With minor alterations, this basic envelope can be used for brass
and woodwinds as well as strings.

An entirely different form of envelope is produced by percussion instruments such as drums, cymbals and
gongs, as well as certain keyboards such as pianos and harpsichords. The percussion envelope is
characterized by a nearly instantaneous attack, immediately followed by a decay to zero volume.
Percussion instruments cannot be sustained at a constant amplitude. For example, the instant a drum is
struck, the sound reaches full volume and decays rapidly regardless of how it was struck. A typical cymbal
envelope is shown below:

Note that the tone immediately begins to decay to zero amplitude after the peak is reached, regardless of
when GATE is cleared. The amplitude envelope of pianos and harpsichords is somewhat more
complicated, but can be generated quite easily with the ADSR. These instruments reach full volume when
a key is first struck. The amplitude immediately begins to die away slowly as long as the key remains
depressed. If the key is released before the sound has fully died away, the amplitude will immediately drop
to zero. This envelope is shown below:

Note that the tone decays slowly until GATE is cleared, at which point the amplitude drops rapidly to zero.

The most simple envelope is that of the organ. When a key is pressed, the tone immediately reaches full
volume and remains there. When the key is released, the tone drops immediately to zero volume. This
envelope is shown below:

The real power of SID lies in the ability to create original sounds rather than simulations of acoustic
instruments. The ADSR is capable of creating envelopes which do not correspond to any “real”
instruments. A good example would be the “backwards” envelope. This envelope is characterized by a
slow attack and rapid decay which sounds very much like an instrument that has been recorded on tape
then played backwards. This envelope is shown below:

Many unique sounds can be created by applying the amplitude envelope of one instrument to the harmonic
structure of another. This produces sounds similar to familiar acoustic instruments, yet notably different. In
general, sound is quite subjective and experimentation with various envelope rates and harmonic contents
will be necessary in order to achieve the desired sound.

Appendix C - Typical 6581 SID Application

Donate to waitingforfriday.com:

If you like this site and want to help support future projects, or you just want to show appreciation for a
project you built, used or enjoyed, please consider leaving a PayPal donation. It's quick, secure and helps

RadioMusic	
Euro	
Module	

	 	

Building the module

1. Parts List

2. Preparing your Teensy 3.1

3. Formatting and setting up the

SD Card

4. Building the module

5. Testing and calibration

6. Troubleshooting and FAQ

7. PCB Versions

8. Schematics

Using the module

1. How to use the Radio Music

module

2. Suggested Audio for the SD

Card

3. Audio packs to download

4. Patch Recipes

5. How to tweak your module

by editing the settings.txt file

Hacking and

expanding the module

1. Reprogramming the module

2. Alternative firmware for

Radio Music

Background

1. John Cage, Stockhausen and

music from radio

Clone this wiki locally

How to use the Radio Music module
Tom Whitwell edited this page on Mar 29 · 8 revisions

What is this module?

Radio Music is a virtual radio module, so it behaves a bit like a radio. It is designed to be a

source of unexpected audio, not a drum loop player or a sample mangler.

Like a radio, this module works on a series of banks and stations. Each of the 16 banks can

contain many different stations. Each station is .raw audio file stored in a bank directory on

the SD card. Choose a bank by pressing and holding the RESET switch. Choose a station by

turning the STATION knob or plugging a voltage into TUNE.

Detailed controls and displays

Adding samples to the SD Card

Full instructions and tools are in the Setting up the SD Card section.

Bank and meter LEDs

The LEDs at the top do two jobs. When audio is playing, they act as a simple VU meter.

While choosing banks, they show the bank number in binary

‑ 0 ○○○○

‑ 1 ●○○○

‑ 2 ○●○○

‑ 3 ●●○○

‑ 4 ○○●○

‑ 5 ●○●○

‑ 6 ○●●○

‑ 7 ●●●○

‑ 8 ○○○●

‑ 9 ●○○●

‑ 10 ○●○●

‑ 11 ●●○●

‑ 12 ○○●●

‑ 13 ●○●●

‑ 14 ○●●●

‑ 15 ●●●●

Station knob

This is how you choose which file to play from the current folder. It works exactly like a radio

tuning knob.

You can put up to 75 files in each folder, but with that many files it might be hard to

accurately tune to a station.

TomWhitwell / RadioMusic

 Code Issues 30 Pull requests 0 Projects 0 Wiki Pulse Graphs

 Pages 18

Pricing Blog Support This repositoryPersonal Open source Business Explore Search Sign upSign in

41 86 25 Watch Star Fork

If you're between stations, you might get a rapid juddering sound as the module slips
between stations. Just retune the knob. If you find it a big problem, put fewer files in
each directory so the channels are more spaced out.

Like real radio stations, the files continue to play in the background ‑ they don't re‑
trigger each time you select a new station.

Start knob

This knob sets where the file will play from if you press the RESET button. It does nothing
until you press the 'Reset' button! (This behaviour can be changed by editing settings.txt

It's quite a coarse control, with a resolution of 512 steps. So, if you have a 30 minute
radio show, the smallest shift you can make will be around 3.5 seconds. If you're playing
a 4 second loop, the control will be finer.

Reset button & LED

TAP the Reset button restarts the current track at the point determined by the Start knob or
the Start CV input.

If you're playing a large file (a 30 minute .raw file is 150mb) it will take a few
milliseconds to skip to the end of the file, so the button feels less responsive than it
does with smaller files, or the earlier parts of bigger files.

HOLD the Reset button for more than 200ms to change banks. Keep the button held down
to skip through all 16 banks.

Bank position is saved on the module after power‑down.

SD Card Slot

Full details of the SD file structure are here: SD Card Details

It's possible to hot‑swap SD cards. If the module detects the SD card has been
removed, it will reboot. When the module boots up, it looks for an SD card for a while ‑
the bank LEDs flash when no card is present. After a while it will give up, and you'll need
to turn the power on and off.

Tune CV Input

This is the CV equivalent of the Station Pot. If the CV changes, the module will immediately
re‑tune to the relevant station.

The module 'understands' 0v to +5v signals, and is protected against higher or negative
voltages.

The CV input is added to the knob position; if the knob is at 12 o'clock and 2.5v is
applied to the CV, it's the equivalent of the knob being fully clockwise. Unfortunately
you can't 'pull the pot down' by applying a negative voltage.

Start CV input

This is the CV equivalent of the Start pot. Like the start pot, it does nothing until a 'Reset' CV
is received. This CV input behaves like the Tune CV ‑ it's zero to +5v, added to the pot
position.

Reset Trigger input

A positive clock here triggers the reset button. It should not trigger the bank change.

https://github.com/TomWhitwell/RadioMusic.wiki.git

 Clone in Desktop

Output

This is a normal modular‑level audio output.

The output level is set by the trimmer on the back of the module

The output is AC‑coupled so cannot output control voltages

Contact GitHub API Training Shop Blog About© 2016 GitHub, Inc. Terms Privacy Security Status Help

Building the module

1. Parts List

2. Preparing your Teensy 3.1

3. Formatting and setting up the

SD Card

4. Building the module

5. Testing and calibration

6. Troubleshooting and FAQ

7. PCB Versions

8. Schematics

Using the module

1. How to use the Radio Music

module

2. Suggested Audio for the SD

Card

3. Audio packs to download

4. Patch Recipes

5. How to tweak your module

by editing the settings.txt file

Hacking and

expanding the module

1. Reprogramming the module

2. Alternative firmware for

Radio Music

Background

1. John Cage, Stockhausen and

music from radio

Clone this wiki locally

SD Card: Format & File Structure
Tom Whitwell edited this page on Oct 25 · 22 revisions

Setting up files on the Micro SD Card

Learn more about setting up the Micro SD card for Radio Music in this great video from
Voltage Control Lab

Use decent branded SD Cards from a reputable supplier. For a few quid, cheapo cards
aren't worth the trouble. I've had good results with Sandisk Ultra and Kingston cards,
both from Amazon. At the time of writing, a 32gb Sandisk Ultra is £20, a 16gb Kingston
is £5.50.

SD Card can be Fat16 or Fat32 formatted. Most SD cards come Fat32 formatted, so you
don't need to do anything

They can be up to 32gb

32gb in the format described below = approximately 100 hours of recording time, 200 x
30 minute files or 16 banks x 12 x 30 minute files.

Files should be:
Mono

16 Bit

44.1 kHz

Headerless Wav files

using the .raw suffix

The module can read up to 16 folders in the top level directory of the SD card

Subdirectories will be ignored, folders beyond 16 may cause a crash

Each folder becomes a bank on the module

Banks are filled in ?? order [I still haven't worked out how this works]

Each folder can contain up to 75 files. More files make it harder to accurately select the
files with the knob or control voltage

SD Card Folder Structure

TomWhitwell / RadioMusic

 Code Issues 30 Pull requests 0 Projects 0 Wiki Pulse Graphs

 Pages 18

Pricing Blog Support This repositoryPersonal Open source Business Explore Search Sign upSign in

41 86 25 Watch Star Fork

The card should be structured as 16 folders, named "0", "1", "2" etc (without the quote
marks)

Inside the folders, files can be named however you like, but must be in 8�3 format:
NOISE.RAW, GOAT.RAW, HPSCHD.RAW

Rather than explaining it, or messing about with the 20gb+ standard library, the easiest
thing is to download this: Empty SD Card File Format

It's not actually empty; each bank contains birdsong & vinyl sounds, and the final bank
contains test tones (so it's 19mb download)

Copy it onto a high quality SD card into the root, so when you open the card on your
computer, you just see the folders.

Don't put any other files onto the SD card; the module won't load. The module should
ignore the cruft that OSX creates on SD cards; trashes, spotlight files etc.

Once you put the SD card into the module, it will create a settings.txt file, which can be
edited.

MAXIMUM FILE LIMIT: You can add 75 files into each of the 16 folders. However, the

module cannot handle more than about 330 files in total. This limit may be lifted with

a future firmware upgrade.

Free software for headerless .raw wav file conversion

Audacity ‑ (Windows, Mac, Linux) ‑ http://audacity.sourceforge.net/

Sbooth Max ‑ Quick batch conversion (OSX) ‑ http://sbooth.org/Max/

A command‑line tool made for converting files to Radio Music
format

FormatRadio is a well documented tool by Apolakipso that downloads free samples and
converts them into Radio Music formatted folders.

Creating headerless .raw wav files in Audacity

Open your source file ‑ i.e. a stereo MP3

Ensure Project Rate is set to 44100 (Bottom left hand corner of the screen)

Mix to Mono (Tracks / Stereo Track to Mono)

You may want to apply some audio compression to even out levels (Effect /
Compressor). Radio recordings are often aggressively compressed, as you'll see if you
import FM radio recordings.

You can remove any silence from the sample using Effect / Truncate Silence

https://github.com/TomWhitwell/RadioMusic.wiki.git

 Clone in Desktop

Normalise (Effect / Normalise ‑ I normally choose ‑0.1dB)

Once the file is ready, choose:
File / Export

Format: "Other Uncompressed Files"

Options

Header: "RAW (header‑less)"

Encoding: "Signed 16‑bit PCM"

The resulting file will have a .raw suffix. You can't double click to open it again in
Audacity, you have to use File / Import / Import Raw Data

Copying files in OSX Terminal

You may find it easier to copy huge files using Terminal, rather than dragging and
dropping in Finder.

rsync is a useful command, if you have a local set of folders that you want to copy onto
an SD Card and keep it sync.

rsync ‑va ‑‑delete ~/Folder1/ ~/Folder2/

Read How to use rsync to make sure you understand it before overwriting files!

Backlog

Load normal Wav files

Automatically handle different bit depths / sample rates

Load compressed mp3/flac files
This from Paul Stoffregen "Just wanted to let you know Frank B is working on
porting the Real Netwoks Helix MP3 code. Already a couple people have managed
to get their Teensy to play MP3 files. The code is still pretty rough, but at least it is
possible. However, seeking in MP3 is tricky. The data is stored in 26 millisecond
overlapping blocks, which isn't nearly as nice to work with as uncompressed audio.
It also tends to eat up chunks of CPU time every 26 ms, which might add some
noticeable latency."

Contact GitHub API Training Shop Blog About© 2016 GitHub, Inc. Terms Privacy Security Status Help

Building the module

1. Parts List

2. Preparing your Teensy 3.1

3. Formatting and setting up the

SD Card

4. Building the module

5. Testing and calibration

6. Troubleshooting and FAQ

7. PCB Versions

8. Schematics

Using the module

1. How to use the Radio Music

module

2. Suggested Audio for the SD

Card

3. Audio packs to download

4. Patch Recipes

5. How to tweak your module

by editing the settings.txt file

Hacking and

expanding the module

1. Reprogramming the module

2. Alternative firmware for

Radio Music

Background

1. John Cage, Stockhausen and

music from radio

Clone this wiki locally

Customise your module: Editing settings.txt
Tom Whitwell edited this page on Mar 5, 2015 · 7 revisions

How to personalise your Radio Music module

When the module starts up, it checks the SD card for a file called settings.txt

If no file is found, it will create one on the card, with the default settings

By editing settings.txt you can change how the module responds and behaves in quite

significant ways

The file is a simple text file you can open in any text editor. Change the numbers to

change the behaviour of the module.

If you have any trouble, just delete the settings.txt file. The module will create a new one

according to the defaults, which are:

MUTE=0

DECLICK=15

ShowMeter=1

meterHIDE=2000

ChanPotImmediate=1

ChanCVImmediate=1

StartPotImmediate=0

StartCVImmediate=0

StartCVDivider=2

Looping=1

Mute

If MUTE=1 (1 = true, 0 = false) then the module will fade the sound out while making

changes ‑ changing channel or resetting. This reduces clicks, making the audio

smoother, but slows down the responsiveness of the module considerably. If you trigger

a change, it will start the fade (lasting as long as DECLICK below), start playing again

when the volume is zero, then fade back in.

DECLICK

If MUTE is true, then the audio fades for the number of milliseconds in DECLICK. If you

set this to 200, the fades are very audible.

If DECLICK is high and you repeatedly trigger changes, the audio may appear to be

constantly faded out ‑ it will never get loud enough to hear

ShowMeter

If ShowMeter is true (1), the 4 LEDs at the top of the module act as a VU meter when

audio is playing

If ShowMeter is false (0), the 4 LEDs display the current bank number in binary

TomWhitwell / RadioMusic

 Code Issues 30 Pull requests 0 Projects 0 Wiki Pulse Graphs

 Pages 18

Pricing Blog Support This repositoryPersonal Open source Business Explore Search Sign upSign in

41 86 25 Watch Star Fork

meterHIDE

If ShowMeter is true, meterHIDE sets how long the number is shown after changing

banks, in milliseconds

ChanPotImmediate and variations

These settings determine how the module's knobs and CV inputs behave

If the setting is true (1), then any change in the knob position or CV input will

immediately change the channel or the playback position

If the setting is false (0), then knob or CV changes only make a difference when RESET

is pressed or a trigger hits the reset input

This is quite confusing, so I'll try to explain

The default setting is: Station selection is immediate, start selection is on reset.

The Station knob operates exactly like a radio tuning knob.

But the Start knob does nothing until RESET is pressed.

That's because the Start knob is more sensitive than the Station knob. Station

selects from one of maybe 20 or 30 positions, while Start might be one of 512

positions. It's easier to nudge Start, causing a glitch in the audio, so I left it 'locked'

until RESET is pressed.

However, there are a lot of fun musical opportunities when Start is set to Immediate,

so experiment. These audio samples Random Drums and Random Voices are easier

to achieve when StartCVImmediate=0, as explained in the Random Beatbox patch

recipe.

StartCVDivider

This number sets the quantisation of the Start CV (and Pot) inputs, to make them less

sensitive to noise and movement. Higher numbers = coarser resolution.

If the setting is 1, there are 1023 possible Start CV positions. In a 10 minute sample,

you can select to a resolution of half a second.

If the setting is 8, there are 128 possible start positions, a resolution of 5 seconds.

Looping

If Looping is false (0) then files will only play once after they've been triggered.

v1.2 and above: Looping=0 also disables the radio system. In normal use, the files

appear to 'play in the background' as you skip between channels. With looping=0, this is

disabled. Every time you move to a channel, it starts from the position set by the start

control. This is more useful for drum‑style sample triggering.

This may have an impact on the hot‑swapping system, please report any issues.

https://github.com/TomWhitwell/RadioMusic.wiki.git

 Clone in Desktop

Contact GitHub API Training Shop Blog About© 2016 GitHub, Inc. Terms Privacy Security Status Help

Majestic	
Radio	
	

Circuit	Diagrams	
	 	

A
R
D
U
I
N
O

M
I
C
R
O

Reset

+12v

TONE Out

Switch 1

Switch 2

(Red LED0)

(Red LED1)

(Red LED2)

Right Pot

Multiturn Pot

Bottom Slide

Top Slide

Front Ribbon

Back Ribbon

(Red LED3)

(Red LED4)

(Red LED5)

(Red LED6)

(Red LED7)

(Green LED0)

(Green LED1)

(Green LED2)

(Green LED3)

(Green LED4)

(Green LED5)

(Green LED6)

(Green LED7)

SID D1SID D3

SID D2

SID D4

SID D6

SID D5

SID D7

SID D0

SID A0

SID A1

SID A2

SID A3

SID A4

SID /CS

SID R/W

SID /RES
+5 Volts

+12 Volts

1 MHz

1 MHz Osc

1k

2k2

2k2

D6
IO12

D4
D2
D3

SS
SCK

MISO
MOSI

IO8
IO9

IO10
IO11

PD

7
6
4
1
0

A
R
D
U
I
N
O

M
I
C
R
O

PB
0-7

D7

D5

RESETRX

TX
USB

+12v Max Input
for 5v Regulator

+12v +5v (100ma from the Arduino 5v regulator)

3v peak to peak

47k 220

47k 220

Arduino IO13

Arduino D0 (RX)

Arduino Micro to SID Chip Connections

Two assignable switches

Two assignable pots

A0 to A5 Six assignable pots

also used for
TONE out distortion

RADIO
MUSIC

Snooper

Red
PushButtonU1-B

pin 7

Electret Mic

Top Panel INPUT

Top Panel OUTPUT

100k
trim

R6

Snooper

386
47uF

Speaker

25k
log

Input Volume
Top Panel

1uF

47uF
4k7 1k

2N2222
100k

Output Modulation
Distortion

Arduino TONE (D1/TX)

SID Audio Out (pin 27)

SID Ext Input (pin 26)

ARDUINO_SID Board

+6v Signal Bias

100k Volume Control
Front Panel Left

Euro Module

SID INPUT/OUTPUT

470k

0.017uF

24k

+5v +5v

680Ω

680Ω

10k
SoftPot

SoftPot Switch

closes when
SoftPot is
Pressed

Top Panel Switch

25k
linear

Arduino A0 and A1

Circuit for SoftPot/Ribbon Controller

SoftPot
Pressed

SoftPot
Open

Switch

Panel Switch
Open

Panel Switch
Closed

25k pot
sets range
of Soft Pot

25k pot
Grounds the

Output to Zero

25k pot
sets offset
of SoftPot

25k pot
alone sets

output value

Cisco Power Module

BLK GND (RTN)
BLK GND (RTN)

WHT ROF
GRN -12v
ORG +12v
RED +5v

ROF GND

from USB Jack
5v line

to USB Arduino Plug
5v line

Power Switch

Remote On/Off

To avoid LatchUp in the SID CMOS chip,
+5v must not be present at any SID pins

when the +12v power is not present.

So +5v from the USB cable is prevented
from reaching the circuit when

the Power Switch is not on.

47k 220

47k 220

Arduino IO13

Arduino D0 (RX)

Two assignable switches

Circuit for Switches

SID
CONTROLLER

CIRCUITS

Majestic	Radio	
	

Arduino	Program	
Template	

	
	 	

/*
//~~~
 Commodore SID Chip Controlled by an Arduino Micro
//~~~

 3 Voice Synthesizer controlled through 29 8-bit registers and 3 Control lines

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Arduino Pin Assignments:~~~~~~~~~~~~~~~~~~~~~~~~~~~~

        8 bit Data on IO11, IO10, IO9, IO8, MOSI, MISO, SCK, SS (PB0-7)
        5 Address Lines on D3, D2, D4, IO12, D6
        Chip Select (active low) on D7
        R/W (write low) on D5
        Clock from a 1MHz Oscillator chip
        Arduino and SID Reset lines tied together

        Two Switches on D0 (RX pin), and IO13
        Six Continuous controllers on A0 through A5
        Two more Continous Controller read from the SID chip PotX and PotY
        TONE function used on D1 (TX pin) to modulate/distort the SID output 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Programming Variables/Constants~~~~~~~~~~~~~~~~~~~~~

 // voice register values (Use voice = 1, 2, or 3. Don't use zero)

 int Attack[4] = {0, 0, 0, 0}; // (0 to 15)
 int Decay[4] = {0, 0, 0, 0}; // (0 to 15)
 int Sustain[4] = {0, 15, 15, 15}; // (0 to 15)
 int Release[4] = {0, 0, 0, 0}; // (0 to 15)
 int FreqLo[4] = {0, 0, 0, 0}; // (0 to 255)
 int FreqHi[4] = {0, 16, 16, 16}; // (0 to 255)
 int PulseWLo[4] = {0, 0, 0, 0}; // (0 to 255)
 int PulseWHi[4] = {0, 8, 8, 8}; // (0 to 15)
 int Waveshape[4] = {0, 0, 0, 0}; // Load with the bit values below

 // bit values for the voice Waveshape (Control) register

 const int NOISE = 128;
 const int PULSE = 64;
 const int SAWTOOTH = 32;
 const int TRIANGLE = 16;
 const int TEST = 8;
 const int RINGMOD = 4;
 const int SYNC = 2;

 // bit values for filt of ldResFilt, add the ones you want, zero for none

 const int FILTEX = 8; // send external signal through the Filter
 const int FILT3 = 4; // send Voice 3 through the Filter
 const int FILT2 = 2; // send Voice 2 through the Filter
 const int FILT1 = 1; // send Voice 3 through the Filter

 // bit values for mode of ldModeVol, add the ones you want, zero for none

 const int OFF3 = 128; // no Voice3 in the output (when used in ring modulation)
 const int HP = 64; // set Filter tos High Pass
 const int BP = 32; // set Filter to BandPass
 const int LP = 16; // set Filter to LowPass

~~~~~~~~~~~~~~~~~~~~~~~~~~~~Programming Functions~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

           ldFreqLo, ldFreqHi,        --voices 1, 2, 3   Frequency
           ldPulseWLo, ldPulseWHi,    --voices 1, 2, 3   Pulse Width
           ldGate,                    --voices 1, 2, 3   Gate the Envelope (+ Waveshape)
           ldEnvAD, ldEnvSR,          --voices 1, 2, 3   Envelope ADSR
           ldFCLo, ldFCHi, ldResFilt  --Filter Cutoff Frequency/Resonance
           ldModeVol                  --FilterType/OutputVolume
           
    ldFreqLo(int voice){  //8-bit fine tune frequency -- FreqLo
    ldFreqHi(int voice){  //8-bit course tune frequency -- FreqHi
    ldPulseWLo(int voice){  //8-bit fine tune Pulse Width -- PulseWLo
    ldPulseWHi(int voice){  //4-bit course tune Pulse Width -- PulseWHi
    ldGate(int voice, bool gate){  // Gates the ADSR Envelope (also loads Waveshape)
    ldEnvAD(int voice){  //4-bit Attack Time, 4-bit Decay time -- Env Attack/Decay
    ldEnvSR(int voice){  //4-bit Sustain Level, 4-bit Release time -- Env Sustain/Release
    
    ldFCLo(int data){  //3-bit fine tune Filter Cutoff Frequency
    ldFCHi(int data){  //8-bit course tune Filter Cutoff Frequency
    ldResFilt(int filt, int res){   //FILTEX/FILT3/FILT2/FILT1, 4-bit Filter Resonance
    ldModeVol(int mode, int vol){   //Filter Type 3OFF/HP/BP/LP, 4-bit Output Volume
    
*/

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      CONSTANTS and Variables
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



const int RW = 5;  // set up names for some Arduino pins
const int CS = 7;
const int TONEpin = 1;
const int ADDR0 = 3;
const int ADDR1 = 2;
const int ADDR2 = 4;
const int ADDR3 = 12;
const int ADDR4 = 6;

// Controllers

int ribbon1 = 0;    //Use ribbon1 =   analogRead(A0);
int ribbon2 = 0;    //Use ribbon2 =   analogRead(A1);
int slider1 = 0;    //Use slider1 =   analogRead(A2);
int slider2 = 0;    //Use slider2 =   analogRead(A3);
int middlePot = 0;  //Use middlePot = analogRead(A4);
int rightPot = 0;   //Use rightPot =  analogRead(A5);
int switch1 = 0;    //Use switch1 =   digitalRead(0);
int switch2 = 0;    //Use switch2 =   digitalRead(13);

//SID read register values

int potX = 0;
int potY = 0;
int osc3_rand = 0;
int env3 = 0;

int addr[4] = {0, 0, 7, 14};  //voice register address offsets 1, 2, 3
int v = 0;

// voice register values (Use voice = 1, 2, or 3.  Don't use zero)

int Attack[4] = {0, 0, 0, 0};      // (0 to 15)
int Decay[4] = {0, 0, 0, 0};       // (0 to 15)
int Sustain[4] = {0, 15, 15, 15};  // (0 to 15)
int Release[4] = {0, 0, 0, 0};     // (0 to 15)
int FreqLo[4] = {0, 0, 0, 0};      // (0 to 255)
int FreqHi[4] = {0, 16, 16, 16};   // (0 to 255)
int PulseWLo[4] = {0, 0, 0, 0};    // (0 to 255)
int PulseWHi[4] = {0, 8, 8, 8};    // (0 to 15)
int Waveshape[4] = {0, 0, 0, 0};   // Load with the bit values below

// bit values for the voice Waveshape (Control) register

const int NOISE = 128;
const int PULSE = 64;
const int SAWTOOTH = 32;
const int TRIANGLE = 16;
const int TEST = 8;
const int RINGMOD = 4;
const int SYNC = 2;

// bit values for filt of ldResFilt, add the ones you want, zero for none

const int FILTEX = 8;  // send external signal through the Filter
const int FILT3 = 4;   // send Voice 3 through the Filter
const int FILT2 = 2;   // send Voice 2 through the Filter
const int FILT1 = 1;   // send Voice 3 through the Filter

// bit values for mode of ldModeVol, add the ones you want, zero for none
  
const int OFF3 = 128;  // no Voice3 in the output (when used in ring modulation)
const int HP = 64;     // set Filter tos High Pass
const int BP = 32;     // set Filter to BandPass
const int LP = 16;     // set Filter to LowPass

unsigned long timestamp;
unsigned long duration;

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                            SETUP
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void setup() {
  
delay(5000); // Allow time for entering new code when programming since TX/RX are being used

pinMode(RW, OUTPUT);
digitalWrite(RW, LOW);    // High for Read, Low for Write
pinMode(CS, OUTPUT);
digitalWrite(CS, HIGH);   // Chip Select active low, to perform Read or Write to register
pinMode(TONEpin, OUTPUT); // Arduino output for TONE (also used as USB TX during programming)
digitalWrite(TONEpin, HIGH);
DDRB = B11111111;         // Setup Data Lines as Outputs

pinMode(ADDR0, OUTPUT);   // Address Select lines for SID Registers
pinMode(ADDR1, OUTPUT);
pinMode(ADDR2, OUTPUT);



pinMode(ADDR3, OUTPUT);
pinMode(ADDR4, OUTPUT);

resetSID();

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Setup Synth values~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  

} //End of Setup

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      MAIN LOOP
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void loop() {

 

}  // End of Main Loop

//  ______________________________________________________________________________
//                Basic Address and Data Functions
//  ______________________________________________________________________________

void loadAddress(int address){
  if ((address & 1) > 0){digitalWrite(ADDR0, HIGH);} 
     else {digitalWrite(ADDR0, LOW);};
  if ((address & 2) > 0){digitalWrite(ADDR1, HIGH);} 
     else {digitalWrite(ADDR1, LOW);};
  if ((address & 4) > 0){digitalWrite(ADDR2, HIGH);} 
     else {digitalWrite(ADDR2, LOW);};
  if ((address & 8) > 0){digitalWrite(ADDR3, HIGH);} 
     else {digitalWrite(ADDR3, LOW);};
  if ((address & 16) > 0){digitalWrite(ADDR4, HIGH);} 
     else {digitalWrite(ADDR4, LOW);};
}

void loadData(int data){ 
  PORTB = data;   
  digitalWrite(CS, LOW);
  delayMicroseconds(3);  
  digitalWrite(CS, HIGH);
}

void resetSID(){
  for(int i=0; i<25; i++){
    loadAddress(i);
    loadData(0);
  } 
  ldModeVol(LP, 255);
  }

void readRegisters(){      //Collect values of all 4 SID readable registers
  DDRB = B00000000;        //Setup Data Lines as Inputs
  digitalWrite(RW, HIGH);  // Setup Read/Write for a Data Read
  
  loadAddress(25);
  digitalWrite(CS, LOW);
  delayMicroseconds(3);
  potX = PINB;
  delayMicroseconds(3);
  digitalWrite(CS, HIGH);
  
  loadAddress(28);
  digitalWrite(CS, LOW);
  delayMicroseconds(3);
  env3 = PINB;
  delayMicroseconds(3);
  digitalWrite(CS, HIGH);

  loadAddress(27);
  digitalWrite(CS, LOW);
  delayMicroseconds(3);
  osc3_rand = PINB;
  delayMicroseconds(3);
  digitalWrite(CS, HIGH);

  loadAddress(26);
  digitalWrite(CS, LOW);
  delayMicroseconds(3);
  potY = PINB;
  delayMicroseconds(3);
  digitalWrite(CS, HIGH);

  digitalWrite(RW, LOW);  // Reset Read/Write to Data Write



  DDRB = B11111111;       // Reset Data Lines as Outputs
}

void loadSensors(){      // load all current sensor values
      ribbon1 =   analogRead(A0) >> 2;
      switch1 =   digitalRead(0);
      ribbon2 =   analogRead(A1) >> 2;
      readRegisters();
      slider1 =   analogRead(A2) >> 2;
      slider2 =   analogRead(A3) >> 2;
      switch2 =   digitalRead(13);
      middlePot = analogRead(A4) >> 2;
      rightPot =  analogRead(A5) >> 2;    
}
//  ______________________________________________________________________________
//                Individual Control Register Load 
//  ______________________________________________________________________________

  /*       ldFreqLo, ldFreqHi,        --voices 1, 2, 3   Frequency
           ldPulseWLo, ldPulseWHi,    --voices 1, 2, 3   Pulse Width
           ldGate,                    --voices 1, 2, 3   Gate the Envelope (+ Waveshape)
           ldEnvAD, ldEnvSR,          --voices 1, 2, 3   Envelope ADSR
           ldFCLo, ldFCHi, ldResFilt  --Filter Cutoff Frequency/Resonance
           ldModeVol                  --FilterType/OutputVolume
*/

void ldFreqLo(int voice){  //8-bit fine tune frequency -- FreqLo
  loadAddress(addr[voice]);
  loadData(FreqLo[voice] & 255);
}

void ldFreqHi(int voice){  //8-bit course tune frequency -- FreqHi
  loadAddress(addr[voice]+1);
  loadData(FreqHi[voice] & 255);
}

void ldPulseWLo(int voice){  //8-bit fine tune Pulse Width -- PulseWLo
  loadAddress(addr[voice]+2);
  loadData(PulseWLo[voice] & 255);
}

void ldPulseWHi(int voice){  //4-bit course tune Pulse Width -- PulseWHi
  loadAddress(addr[voice]+3);
  loadData(PulseWHi[voice] & 15);
}

void ldGate(int voice, bool gate){  // Gates the ADSR Envelope (also loads Waveshape)
  
  loadAddress(addr[voice]+4);
  loadData(Waveshape[voice] + gate);
}

void ldEnvAD(int voice){  //4-bit Attack Time, 4-bit Decay time -- Env Attack/Decay
  loadAddress(addr[voice]+5);
  int x = ((Attack[voice] & 15) << 4) + (Decay[voice] & 15);
  loadData(x);
}

void ldEnvSR(int voice){  //4-bit Sustain Level, 4-bit Release time -- Env Sustain/Release
  loadAddress(addr[voice]+6);
  int x = ((Sustain[voice] & 15) << 4) + (Release[voice] & 15);
  loadData(x);
}

void ldFCLo(int data){  //3-bit fine tune Filter Cutoff Frequency
  loadAddress(21);
  loadData(data & 7);
}

void ldFCHi(int data){  //8-bit course tune Filter Cutoff Frequency
  loadAddress(22);
  loadData(data & 255);
}

void ldFiltRes(int filt, int res){   //FILTEX/FILT3/FILT2/FILT1, 4-bit Filter Resonance, 
  loadAddress(23);
  int x = ((res & 15) << 4) + (filt & 15);
  loadData(x);
}

void ldModeVol(int mode, int vol){   //Filter Type 3OFF/HP/BP/LP, 4-bit Output Volume
  loadAddress(24);
  loadData((vol & 15) + (mode & B11110000));
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



//                Time Functions
//  ______________________________________________________________________________

void timeStamp() {timestamp = millis(); };
// store current time from the running clock millis()

unsigned long dur(){
  return (millis() - timestamp);
}
// returns the current time minus the last store timestamp

void waitTill(unsigned long msec) {
  while (dur() < msec) {};
}
//wait till the time duration from timestamp equals the given time in msec



Majestic	Radio	
	

Arduino	Program	
Sample	



Majestic SID Radio
Arduino Example Programs

Instructions:

Combine these “Setup Synth”, “Main Loop”, and “Loop Function” sections with the “SID Arduino Template” program, replacing those same sections in the 
Template with the ones here.  Look under the Tool Menu of the Arduino IDE programming app, and set the “Board” type to “Arduino/Genuino Micro”.

Example 1:  

//Triangle waveform on voice 2 distorted by TONEpin.  
//Triangle frequency on back ribbon.  
//LoPass filter frequency on top Slider, half Resonance. 
//Modulation frequency on MultiTurn Pot.  

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Setup Synth values~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ldFiltRes(15, 7);  // Send all through Filter, Resonance at half
ldModeVol(LP, 15);  // LowPass Filter, Output Volume at max

Attack[2] = 0;
Decay[2] = 0;
ldEnvAD(2);

Sustain[2] = 15;
Release[2] = 0;
ldEnvSR(2);

Waveshape[2] = TRIANGLE;
ldGate(2, 1);  //Turn on voice 2 and leave on

} //End of Setup

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      MAIN LOOP
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void loop() {

  int v = 2;
  
loadSensors();
ldFCHi(slider1); 
tone(TONEpin, middlePot);  //Distortion frequency

FreqHi[v] = ribbon1;
ldFreqHi(v);

}  // End of Main Loop
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Example 2:

// Three voices with waveforms set by the 2 switches and frequency set by the 2 ribbons and lower slide.
// ADSR envelopes set once in Setup.  Durations of envelopes set by random values from the Right Pot.
// Distortion/4th voice on the Volume and Multiturn pot.  LP Filter frequency on upper Slide pot.
// All 9 controllers are in play at all times.

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Setup Synth values~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ldFiltRes(15, 7);  // Send all through Filter, Resonance at half
ldModeVol(LP, 15);  // LowPass Filter, Output Volume at max

//envelopes will be mainly Attack/Decay/Sustain and then
//retriggered almost immediately after Release



for (int i=1; i<4; i++){
  
      Attack[i] = 10;
      Decay[i] = 10;
      ldEnvAD(i);
      
      Sustain[i] = 1;
      Release[i] = 1;
      ldEnvSR(i);
      
} //End of ADSR envelope load loop

} //End of Setup

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      MAIN LOOP
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
boolean state1=0;  //State of voice Gate
boolean state2=0;
boolean state3=0;

int dur1 = 0;  //Voice duration counts
int dur2 = 0;
int dur3 = 0;

void loop() {  
  
loadSensors();      //read all 8 pot and switch values
//readRegisters();  //make 4 SID read registers available 

ldFCHi(slider1);           //Filter cutoff frequency - TopSlider
tone(TONEpin, middlePot);  //Distortion frequency - MultiTurn Pot

//Two Ribbons and Bottom Slider have 10 bit values to set Voice Frequencies
//Shift right 2 for high byte, shift left 6 for low byte
 
FreqHi[1] = ribbon1>>2;
ldFreqHi(1);
FreqHi[2] = ribbon2>>2;
ldFreqHi(2);
FreqHi[3] = slider2>>2;
ldFreqHi(3);

FreqLo[1] = ribbon1<<6;
ldFreqLo(1);
FreqLo[2] = ribbon2<<6;
ldFreqLo(2);
FreqLo[3] = slider2<<6;
ldFreqLo(3);

// Set voice waveshapes with 2 Switches, loaded inside ldGate() function

if (switch1 && switch2)
{Waveshape[1]=SAWTOOTH; Waveshape[2]=TRIANGLE; Waveshape[3]=NOISE;}
if (switch1 && !switch2)
{Waveshape[1]=SAWTOOTH; Waveshape[2]=TRIANGLE; Waveshape[3]=SAWTOOTH;}
if (!switch1 && switch2)
{Waveshape[1]=SYNC; Waveshape[2]=TRIANGLE; Waveshape[3]=TRIANGLE;}
if (!switch1 && !switch2)
{Waveshape[1]=RINGMOD; Waveshape[2]=TRIANGLE; Waveshape[3]=TRIANGLE;}

// Trigger voice ADSR envelopes on & off. Decrement envelope durations.
// Durations set with random values between 1 and Right Pot value.

if (dur1 == 0){
    dur1 = random(1, rightPot);
            if (state1) { ldGate(1, 0);  state1=0; } 
            else        { ldGate(1, 1);  state1=1; } 
} else { dur1 -= 1; }

if (dur2 == 0){
    dur2 = random(1, rightPot);
            if (state1) { ldGate(2, 0);  state1=0; } 
            else        { ldGate(2, 1);  state1=1; } 
} else { dur2 -= 1; }

if (dur3 == 0){



    dur3 = random(1, rightPot);
            if (state1) { ldGate(3, 0);  state1=0; } 
            else        { ldGate(3, 1);  state1=1; } 
} else { dur3 -= 1; }

delay(10);  // Sets envelope duration base count value

} //End of Main Loop

Example 3

// This example loops through a short tune.  Change the tune frequency with ribbon1 (also detunes it).
// Randomize the frequencies with Right Pot.  Change the tempo with ribbon2 (only at the tune starts).

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Setup Synth values~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ldFiltRes(15, 7);  // Send all through Filter, Resonance at half
ldModeVol(LP, 15);  // LowPass Filter, Output Volume at max

for (int i=1; i<4; i++){
  
      Attack[i] = 1;
      Decay[i] = 2;
      ldEnvAD(i);
      
      Sustain[i] = 5;
      Release[i] = 2;
      ldEnvSR(i);
      
} //End of ADSR envelope load loop

loadSensors();
  
} //End of Setup

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      MAIN LOOP
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
int basebeat=10;

void loop() { 

basebeat = ribbon2 + 10; 

ldFCHi(slider1);           //Filter cutoff frequency - TopSlider
tone(TONEpin, middlePot);  //Distortion frequency - MultiTurn Pot

// Set voice waveshapes with 2 Switches, loaded inside ldGate() function

if (switch1 && switch2)
{Waveshape[1]=NOISE; Waveshape[2]=NOISE; Waveshape[3]=NOISE;}
if (switch1 && !switch2)
{Waveshape[1]=SAWTOOTH; Waveshape[2]=SAWTOOTH; Waveshape[3]=SAWTOOTH;}
if (!switch1 && switch2)
{Waveshape[1]=TRIANGLE; Waveshape[2]=TRIANGLE; Waveshape[3]=TRIANGLE;}
if (!switch1 && !switch2)
{Waveshape[1]=TRIANGLE; Waveshape[2]=TRIANGLE; Waveshape[3]=TRIANGLE;}

//Play notes with vOn(beat #, voice, frequency),  vOff(beat #, voice)

timeStamp();
    vOn(1, 1, 4387);
    vOn(2, 2, 5530);
    vOn(3, 3, 6577);   vOff(4, 3); 
    vOn(4, 3, 8779);   vOff(5, 3); 
    vOn(5, 3, 11060);  vOff(6, 3); 
    vOn(6, 3, 6577);   vOff(7, 3);
    vOn(7, 3, 8779);   vOff(8, 3); 
    vOn(8, 3, 11060); 
        
    vOff(8, 1); vOff(8, 2); vOff(9, 3); 
    
     
    vOn(9, 1, 4387);
    vOn(10, 2, 4927);
    vOn(11, 3, 7382);   vOff(12, 3); 
    vOn(12, 3, 9854);   vOff(13, 3); 



    vOn(13, 3, 11718);  vOff(14, 3); 
    vOn(14, 3, 7382);   vOff(15, 3); 
    vOn(15, 3, 9854);   vOff(16, 3); 
    vOn(16, 3, 11718);
    
    vOff(17, 2); vOff(20, 3); vOff(20, 1); 

} //End of Main Loop

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                Loop Functions
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void timeStamp() {timestamp = millis(); };
// store current time from the running clock millis()

unsigned long dur(){
  return (millis() - timestamp);
}
// returns the current time minus the last store timestamp

void waitTill(int beat) { 
  beat = beat * basebeat;
  while (dur() < beat) {};
}
//wait till the time duration from timestamp equals the given beat time

void vOn(int beat, int voice, int pitch){
  loadSensors();
  pitch = pitch + (ribbon1 << 6) + random(rightPot << 4);
  FreqHi[voice] = pitch>>8;
  ldFreqHi(voice);
  FreqLo[voice] = pitch & 255; 
  ldFreqLo(voice);
  
  waitTill(beat);
  ldGate(voice, 1); 
}

void vOff(int beat, int voice){
  waitTill(beat);
  ldGate(voice, 0);
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


