Search the Arduino Website Q

TUTORIALS (//WWW.ARDUINO.CC/EN/TUTORIAL/HOMEPAGE) > Examples (//www.arduino.cc/en/Tutorial/Examples?action=edit)?

(//www.arduino.cc/en/Tutorial/Examples?action=edit) -, Digital > Debounce

- Debounce
- Hardware Required
- Circuit
- Schematic
- Code

- SeeAlso

Debounce

Pushbuttons often generate spurious open/close transitions when pressed, due to mechanical and physical issues: these transitions
may be read as multiple presses in a very short time fooling the program. This example demonstrates how to debounce an input, which
means checking twice in a short period of time to make sure the pushbutton is definitely pressed. Without debouncing, pressing the
button once may cause unpredictable results. This sketch uses the millis() function to keep track of the time passed since the
button was pressed.

Hardware Required

- Arduino or Genuino Board

- momentary button or switch
- 10k ohm resistor

- hook-up wires

- breadboard

Circuit

.

.

.
IR
IR

.

.
R

"ERX Diecimila . v

.

.

.
IR
IR

.

.
IR

wuv.arduine

POUER A
& mS/ Gnd W . e *ee e

image developed using Fritzing (http://www fritzing.org). For more circuit examples, see the Fritzing project page (http://fritzing.org/projects/)

Schematic

click the image to enlarge

3v3 s5v Vin
Power
e RST D13 e
w— AREF D12
Arduino on ==
I
Do =t
g — (//www.arduino.cc/en/uploads/Tutorial/button_sch.png)
O D7 frm
§ Ds pi
2
-l A0 2 ps = s2
— AT D4 fre
— A2 ,?): p3 =i
i)
— A3 g D2
. D1 ==
— s po = L
GND :E

Code

The sketch below is based on Limor Fried's version of debounce, but the logic is inverted from her example. In her example, the switch
returns LOW when closed, and HIGH when open. Here, the switch returns HIGH when pressed and LOW when not pressed.

/*
Debounce

Each time the input pin goes from LOW to HIGH (e.g. because of a push-button
press), the output pin is toggled from LOW to HIGH or HIGH to LOW. There's
a minimum delay between toggles to debounce the circuit (i.e. to ignore
noise).

The circuit:
* LED attached from pin 13 to ground
* pushbutton attached from pin 2 to +5V

* 10K resistor attached from pin 2 to ground

* Note: On most Arduino boards, there is already an LED on the board

connected to pin 13, so you don't need any extra components for this example.

created 21 November 2006
by David A. Mellis
modified 30 Aug 2011

by Limor Fried

modified 28 Dec 2012

by Mike Walters

modified 30 Aug 2016

by Arturo Guadalupi

This example code is in the public domain.

http://www.arduino.cc/en/Tutorial/Debounce
*/

// constants won't change. They're used here to

// set pin numbers:

const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

// Variables will change:

int ledState = HIGH; // the current state of the output pin
int buttonState; // the current reading from the iInput pin
int lastButtonState = LOW; // the previous reading from the input pin

// the following variables are unsigned long's because the time, measured in miliseconds,
// will quickly become a bigger number than can be stored in an int.

unsigned long lastDebounceTime = @; // the last time the output pin was toggled

unsigned long debounceDelay = 50; // the debounce time; increase if the output flickers

void setup() {
pinMode(buttonPin, INPUT);
pinMode(ledPin, OUTPUT);

// set initial LED state
digitalWrite(ledPin, ledState);
}

void loop() {
// read the state of the switch into a local variable:
int reading = digitalRead(buttonPin);

// check to see if you just pressed the button
// (i.e. the input went from LOW to HIGH), and you've waited
// long enough since the last press to ignore any noise:

// If the switch changed, due to noise or pressing:
if (reading != lastButtonState) {

// reset the debouncing timer

lastDebounceTime = millis();

}

if ((millis() - lastDebounceTime) > debounceDelay) {
// whatever the reading is at, it's been there for longer
// than the debounce delay, so take it as the actual current state:

// 1f the button state has changed:
if (reading != buttonState) {
buttonState = reading;

// only toggle the LED if the new button state is HIGH
if (buttonState == HIGH) {

ledState = !ledState;
}

// set the LED:
digitalWrite(ledPin, ledState);

// save the reading. Next time through the loop,
// it'll be the lastButtonState:
lastButtonState = reading;

[Get Code] (//www.arduino.cc/en/Tutorial/Debounce?action=sourceblock&num=1)

See Also

- pinMode (//www.arduino.cc/en/Reference/PinMode)()

- digitalWrite (//www.arduino.cc/en/Reference/DigitalWrite)()

- digitalRead (//www.arduino.cc/en/Reference/DigitalRead)()

- if (//www.arduino.cc/en/Reference/If)()

- millis (//www.arduino.cc/en/Reference/Millis)()

- DigitalReadSerial (//www.arduino.cc/en/Tutorial/DigitalReadSerial) - read a switch, print the state out to the Serial Monitor
- Blink (//www.arduino.cc/en/Tutorial/Blink) - turn an LED on and off

- Button State Change (//www.arduino.cc/en/Tutorial/ButtonStateChange) - counting the number of button pushes

Last revision 2015/07/29 by SM

Share

0000

NEWSLETTER

Enter your email to sign up >

©2016 Arduino Copyright Notice (//www.arduino.cc/en/Main/CopyrightNotice) = Contact us (//www.arduino.cc/en/Main/ContactUs)
About us (//www.arduino.cc/en/Main/AboutUs) Careers (//www.arduino.cc/Careers)

(https://twitter.com/arduino) (https://www.facebook.com/official.arduino) (https://plus.google.com/+Arduino)

(https://www.flickr.com/photos/arduino_cc) (https://youtube.com/arduinoteam)

