MKR _Zero Audio Project

by John Talbert, April 2021

A versatile platform for exploring Audio Processing
With the MKR_Zero processor

Table of Contents

MKR_Zero Audio Project

MKR_Zero Board
Board Connections
Audio Circuits

Circuit Diagram

More Circuit Devices
Project Box with labels

Project Box

Sample Programs

Sensor Printout

Tone Generation
Tone Generation with Loop Time

Tone Generation with Timer
MIDI Output
Signal Processing - ADC to DACO

ADC to DACO - Delay Line
ADC to DACO - Pitch

15

18
20
23, 28

31, 33

39

44
48

Signal Processing - SineWave to UDA1334 DAC
ADC to UDA1334

ADC to UDA1334 - Delay Line & Pitch

ADC to UDA1334 - Fuzz Distortion

ADC to UDA1334 - Transform Function

ADC to UDA1334 - Transform Array

3. Closing Thoughts

4. The Next Step

51, 63
54
56, 59
62
65
70

76

77

Arduino MKR_Zero

The MKR Zero is a SAM D21-based 32-bit microcomputer board. It has several audio/
music features -- an on-board SD card reader with dedicated SPI interfaces (SPI1) that
allows you to play MUSIC files with no extra hardware, and an 12S (Inter-IC Sound)
serial bus interface, a standard interface for connecting digital audio devices. Two
libraries have been built to take advantage of these two interfaces.

Arduino Sound library — a simple way to play and analyze audio data using
Arduino on SAM D21-based boards.

I2S library — to use the 12S protocol on SAMD21-based boards.

The MKR Zero has seven ADC Analog input pins which can be configured as 8, 10, or
12-bit. The sampling rate for these ADCs is set up for slow moving signals, but this can
be changed to accomodate audio signals by hacking into the board's counter register
settings for the ADCs (illustrated
later in some of the sample
programs).

Most previous Arduino boards
had no DAC output pins.
Developers resorted to filtering a
PWM (Pulse Width Modulation)
output to simulate a DAC. The
MKR Zero board, however, has
one 10-bit Digital to Analog
Converter ouput pin.

The ADC and DAC functions on

the MKR_Zero are not ideal for

audio signal processing applications but work fine as educational tools to explore simple
audio digital processing application development. Perhaps future boards will have the
higher sampling rates and 16-bit widths.

The supply voltage for the board is 5 volts, but the operating voltage is 3.3v
All pins must only use a voltage range of zero to 3.3volts. 5 volts applied to any of the
pins will likely destroy the processor.

An I2C serial interface is available with its own 5 pin connector. An extra serial interface
is provided in addition to the USB programming port. Its Tx and Rx pins are put to use

https://arduino.cc/en/Reference/ArduinoSound
https://arduino.cc/en/Reference/I2S

as standard MIDI input and output in this project.

The processor runs at a speedy 48MHz which is triple the speed of the original Uno
board.

There 1s 256k of Flash memory for user programs, and 32k of SRAM memory for data
storage (program variables). This is quite an improvement over the Uno's 30K of Flash
memory and 2K of SRAM. The larger SRAM will come in handy when storing audio
data for digital delays.

There is an optional connector for an external battery (3.7volt Lithium at 700 mAh
minimum). In addition to the one ADC pin used for the audio input, 4 additional ADC
pins are available for connection to slide pot controllers. Finally, miscellaneous
switches, LEDs, and output signal generation pins can be connected to any of the 20
available digital I/O pins of the MKR_Zero.

The illustration below labels all the circuit connections made with the MKR Zero pins
for this project.

[Arduino MKR Zero Board J

Battery
SAMD21, 32bit, 48MHz aD
256KB Flash, 32KB SRAM

12C Connector: SHR-05V-S-B
5 pin 1.0mm pitch

Li-Po 3.7 V

«D
700 mAh
minimum
pin 32, use LED_BUILTIN define
A +5 volt Output, 600ma
DAC Output A m +5 volt Power Input
ADC Input XH 016) +3.3 volt Output, 600ma
SlidePot 4 (GND]
SlidePot 3 D18~ (RESET) Connected to pushbutton switch
slidePot 1 Y3019~ ' D14 | to MIDI Out Circuit
SlidePot 2 X n2e (D13 /| to MIDI In Circuit
125 — DIN 3021 ' ~D12 /|
LED 2 [oo aoIE perort
LED 1 s L -D16 PIN C
125 — BCLK | D2~] L /D9 /] PIN B
125 — WSEL | D3~] { ~ ~D8 /| PIN A
Switch 1 | D4~ /] L <D7 /] Switch 4 (12C Port)
Switch 2 | D5~] (~ ~D6 | Switch 3

UDA1334 DAC BOARD
+5v, GND, Vin, DIN, BCLK, WSEL

SD CARD
PA12, 13, 14, 15, 27

Audio Circuit

The overall purpose of this project is to create an versatile platform for exploring audio
signal processing using the MKR Zero processor. The planned signal chain is as fol-
lows: Audio from the outside world will be input to an MKR Zero ADC pin. The ADC
(Analog to Digital Converter) translates the audio signal into a stream of digital numbers
which can be processed in some way in an Arduino sketch. The output data from the
processing can then be sent to either the MKR Zero DACO (Digital to Analog Convert-
er) or to the higher fidelity UDA1334 DAC (using the 12S interface) resulting in a final
analog output signal changed in some unique way from the original signal.

The source audio can come from any number of readily available audio devices -- elec-
tronic keyboard, guitar amp, mic preamp, computer, smart phone headphone out, com-

puter pad headphone out. A sinewave input is a useful signal to use when testing your
signal processing application. Any readily available signal generator app on a smart
phone or pad can output sinewaves at any frequency and amplitude.

The audio from all these devices is a bipolar signal that sit on zero volts and swings be-
tween both positive and negative voltages. The input to the ADC of the MKR Zero,
however, must be unipolar, swinging between zero and positive voltages only, and guar-
anteed to never go above 3.3 volts. Some circuitry is needed to accomodate these ADC
input requirements.

For this project, special purpose LM358 opamps are used that can operate from a single
power supply, in our case, +5 volts, with a full output range of zero to 5 volts.

Referring to the circuit diagram, the Audio Input jack is connected to an inverting opamp
configuration (upper A) with a gain of negative one (- 100k/100k). The plus opamp in-
put, which is normally connected to ground, in this case, is connected to a virtual ground
of 1.6 volts, halfway between zero and 3.3 volts, as set by the 10k/4k7 voltage divider
circuit. This sets the output signal at a bias voltage of 1.6 volts instead of the usual zero
volts.

Before connecting to pin ADI1, the op amp output goes through a 47k resistor and a
diode tied to 3.3 volts. The diode prevents the ADC input from going above 3.3 volts.

A 300pf capacitor in parallel with a 100k resistor in the opamp feedback will drop the -1
gain for frequencies above about 5300Hz to minimize foldover frequencies, a problem
with ADCs when the input signal has any frequencies above one-half the sampling
frequency.

The MKR Zero's DACO output can be mixed back in with the Audio Input. This creates
a feedback loop useful in delay and reverb programs. The amount of feedback is con-
trolled by a 100k pot that varies the gain of opamp B from zero to negative one. The
same feedback could be accomplished in code but using circuitry allows for faster pro-
cessing and sampling speeds.

Opamp A at the bottom of the circuit diagram is set up as a mixer in a non-inverting
opamp configuration. A resistor mixer combines signals from 5 possible sources: ADC
input, DACO output, UDA1334 DAC output , and any square or pulsewave signals cre-
ated on the MKR Zero pins A and B (D8, D9). Each of the 5 inputs go through 10K log
pot volume controls.

The output of the opamp mixer stage is a zero to 5 volt signal. This unipolar property
enables the use of a unique type of distortion circuit. Those familiar with transitor con-
figurations may recognize this circuit as a common emitter transitor configuration with
one strange difference, an audio signal is connected to the collector through 22k instead
of the usual power supply voltage. The base input signal connected to the 100k resistor
drives the distortion of the mixer signal. The base signal comes from either the DACO
output or PinC (D10) as selected by a switch. The amount of distortion is controlled by

a volume control.
This simple transistor circuit has three modes of operation.

1. When the base input voltage is at zero volts, the transistor is said to be in cutoff
which is an inactive state. Nothing happens to the mixed signal and it is allowed to ad-
vance unaffected to the unity gain buffer opamp B.

2. When the base input voltage is high enough, the transitor goes into saturation.
This is an extremely active state which clamps the collector voltage to zero volts effec-
tively shutting oft the mixer signal.

3. A small range of input voltages between zero volts and the higher voltages
causing saturation will put the transistor into its "active" state. In this state the mixer sig-
nal is allowed to pass on, but with attenuation. Higher input voltages result in a smaller
mixer output approaching the highest attenuation at saturation, or zero output.

It must be noted that both the base input voltage and the collector mixer signal voltage
affect the saturation and active states. It takes more input voltage to drive a higher volt-
age collector signal into saturation than it would for a smaller collector voltage.

To put this picture together, imagine a squarewave base input signal switching the tran-
sistor state between cutoff and saturation, or between cutoff and active, at a high fre-
quency. The mixed signal output waveform will alternate between being unaffected and
being reduced to zero or attenuated, all at the rate of the base squarewave. Turning
down the volume control on the squarewave will reduce the attenuation on the affected
parts of the mixed signal thus reducing the distortion. Turning the volume control all the
way to zero will effectively turn off the distortion effect.

This distortion circuit has another fortunate property. When the mixed signal goes to
zero, or silence, the transistor is put into its cutoff or inactive state resulting in zero out-
put. The distortion driving signal will not feed through to the ouput when the mixed sig-
nal 1s silent.

The final opamp stage is a simple unity gain voltage follower. It acts as a buffer pre-
venting the output volume control from interfering in the work of the distortion stage.

After the output volume control, the mixed output signal is sent to a jack and then onto
the Pam8302 Adafruit Amplifier module which drives a small speaker in the enclosure.
If any plug is inserted into the Main Output jack, the connection to the Amplifier is
broken by means of a switch integrated in the jack.

DAC O

10k
log

DAC 1

10k
log

PINA

10k
log

PINB

10k
log

pAC 0—O

PINC

—o0

10k

log “‘

—f—

1uF

DAC 0

p
Arduino MKR Zero
Feedback
100k 100k L Synth
> L35 O.1uF 100k 33v
| C 1N5817
+8.; W
300pf 47k
14
O AD 1
0.1uF 100k i
Audio Input Dg—‘
-8
= 2l A
5v 3| + 3 1
. 10k = 10k ADC
(Bias at 1.6v) 72 PU—
L+ LM358 log
4k7 ~210uF

47k

s

DN O——[UDA 1334

MIXER ~

DAC 1

800pf =

12
LM358

W

J” 0.001uF

DISTORT 100k

L Stereo Output

BUFFER

2N4401

_I Main Output

Pam8302
Adafruit Amp

T 220uF
T

More Circuit Devices

Since the MKR Zero's single DAC is only 10-bits wide a higher fidelity option was
included in the project. The UDA1334 DAC module, sold by Adafruit, uses the 12S
interface with three input controls - DIN, BCLK, AND WSEL. Its stereo output is
labeled DACI and connected to a separate stereo mini jack.

Adafruit I12S Stereo Decoder - UDA1334A

._SCCKWUTE PLL uUDA1334
O 059105", O 125 pAC
rl "

QUO HSEL BCLK ﬂGND

000000000 » Q{

UIN " GND DIN Lout Rout

The MKR_Zero is programmed through a USB port which can be connected to a
computer running the Arduino IDE application, available on the Arduino website. This
same USB port can be programmed to act as a USB MIDI port using the MidiUSB
library. This is an option if you want to program the MKR Zero as a MIDI controller.

However, the MKR Zero has an extra set of Tx and Rx serial data lines not involved
with the USB port. These were wired up to provide a standard Midi IN and Midi OUT
on two 5-pin DIN sockets. The minimal amount of circuitry needed for this is shown
below (replace teensy chip with MKR Zero pinouts).

If you opt for the faster MIDI USB, you may experience problems uploading new
programs from the Arduino IDE application. This is because the MidiUSB program is
using the same USB port needed to upload a new program. A quick fix for this problem
1s to wait for the IDE to say "Uploading", then quickly double or triple click the MKR
board reset button. This will stop the current program and put the microprocessor into
bootloading mode. The timing is tricky and it may take a few attempts before it works.
An external reset button has been mounted on the back of the project enclosure.

10

MAE

TEENSY

<3 1> =1 Rz
& N 1 3.2 8
. <5 4> S— > 1 15
i 2 220 O v Lil 56
{ 3 5
i PE 25 3 i 3
i |
N1 37
- 8§
B -
<3 1>
1 €5 4
] P
3 -
PE

LT

RXYT
{‘13' \{‘."”
FCAN-T
HCAN

CETTTEEE T T

Teensy &1

OO

R\ 3

ek

Jva szl
¥EETYON

11

12

Arduino MKR Zero
Synth

Reset
Output
Volume Distortion
Level PIN C /DAC 0

Distortion Select

Pushbutton 2 Pushbutton 1
LED 2 LED 1

Stereo DAC 1 ' 'i:‘
Output ./

ADO Input Pushbutton 4

Main Mono Out Pushbutton 3

ADCO DACO DAC 1 PIN A PIN B

Volume Volume Volume Volume Volume

MIDI MIDI UsB
INPUT OUTPUT CABLE

13

14

Sample Programs

Sensor Printout

This program prints out a running reading of the enclosure's four slide pots and four
switches. The Arduino IDE's Monitor Function can be turned on from the Tools Menu.
It uses the "Serial" library commands to print out the sensor values to the Monitor
window.

The function "switchCombo" was included to link the two switch LEDs with their
switch actions. An audio squarewave tone was also created on pinA using delay()
functions.

At the top of the sketch is a section that defines all the constants and variables needed to
use the mounted sliders, switches, LEDs, and voice pins. It is recommended that this
section be copied to all your project sketches.

/*
Print Sensor Values. Test 3 Arduino Voices. LEDs tied to Switches.

*/
//
// CONSTANTS and Variables
//

//

// ANALOG INPUTS

//

#define SLIDER1 A5 //top left
#define SLIDERZ2 A3 //bottom left
#define SLIDER3 A4 //top right
#define SLIDER4 A2 //bottom right

int sliderl
int slider2
int slider3
int slider4

o
[SESIR S

//

//DIGIITAL SWITCHES

//

#define SWITCH1 5 //top toggle switch
#define SWITCH2 4 //bottom toggle switch

15

#define SWITCH3 6 //right pushbutton switch
#define SWITCH4 7 //left pushbuttun switch

boolean switchl
boolean switch2
boolean switch3
boolean switch4

[SESISR S

#define VOICEPIN_A 8 //pot 4 on box right side
#define VOICEPIN_.B 9 //pot 5 on box right side
#define VOICEPIN_C 10 //Modulating Voice (white knob on box left side, and switch up)

#define LED1 1 //top toggle switch's LED
#define LED2 @ //bottom toggle switch's LED

unsigned int freq = 50;

void setup() {
delay(1000);
Serial.begin(9600);

pinMode(LED1, OUTPUT);
digitalWrite(LED1, HIGH);
pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); //Switch inputs have external 10k pulldown resistor
pinMode(SWITCHZ2, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

//noTone(VOICEPIN_A);

}

//
// Main LOOP
//

void loop() {

digitalWrite(VOICEPIN_A, LOW);
delay(sliderl);

int x = switchCombo();

loadSensors();

16

Serial.print("sl = ");
Serial.print(sliderl);
Serial.print(" s2 = ");
Serial.print(slider2);
Serial.print(" s3 =");
Serial.print(slider3);
Serial.print(" s4 = ");
Serial.print(slider4);
Serial.print(" s5 =");
Serial.print((50 + (slider3 >> 1)));

Serial.print(" ")

Serial.print(" switches ");
Serial.print(switchl);
Serial.print(switch2);
Serial.print(switch3);
Serial.println(switch4);

//tone(VOICEPIN_A, freq);
digitalWrite(VOICEPIN_A, HIGH);
delay(sliderl);

/*
freq = @ + (sliderl >> 1);
//tone(VoicePinA, freq);

//int v = map(slider2, 0, 1024, 1, 255);

digitalWrite(VoicePinA, HIGH);
// digitalWrite(VoicePinB, HIGH);

delay(freq);
digitalWrite(VoicePinA, LOW);
// digitalWrite(VoicePinB, LOW);
delay(10);
*/

} //End of Loop

yZ220nnn R
void loadSensors(){ // load all current sensor values
sliderl = analogRead(SLIDER1) ;
slider2 = analogRead(SLIDER2) ;
slider3 = analogRead(SLIDER3) ;
slider4 = analogRead(SLIDER4) ;
switchl = digitalRead(SWITCH1);
switch2 = digitalRead(SWITCH2);
switch3 = digitalRead(SWITCH3);
switch4 = digitalRead(SWITCH4);
}

int switchCombo(){
int result = switch2 + (switchl * 2);

switch (result) {
case 0:
digitalWrite(LED2, LOW);
digitalWrite(LED1, LOW);
break;

17

case 1:
digitalWrite(LED2, HIGH);
digitalWrite(LED1, LOW);
break;

case 2:
digitalWrite(LED2, LOW);
digitalWrite(LED1, HIGH);
break;

case 3:
digitalWrite(LED2, HIGH);
digitalWrite(LED1, HIGH);
break;

}

return result;

Tone Generation

Three digital pins from the MKR Zero are set aside for tone generation. Voice A and B
(D8 and D9) are connected to the circuit mixer after volume controls. Voice C drives the
distortion circuit described above.

The Arduino function tone() makes it easy to generation a squarewave tone on any
digital pin. Its major limitation, however is that it can only be used on one voice at a
time. Some other limitation to watch out for: the function will crash if called faster than
once every 50 milliseconds, and the voice output clicks whenever the function is called.

A second method for generating a tone uses the delay() function in a loop. The voice
pin is toggled each time through the loop. The value of the delay sets the frequency of
the tone. Two different delay values, one for high and one for low, can create a pulse
waveform instead of a squarewave. The main problem with this method is that the delay
function stops all program activity for the duration of the delay.

This first sketch uses the tone() function for one of the voices and one delay() function
for the other two voices. One voice pin is toggled every time through the main loop
while the second voice pin is toggled every other time through the main loop, making it
an octave lower. One slider sets the frequency value in the tone() function. A second
slider sets the delay() value and thus the other voice frequencies.

/*
Test 3 Arduino Voices
VoiceA on volume knob A uses the tone() function with Slider 1 controlling freq

VoiceB on volume knob B uses the delay() function with Slider 2 controlling freq
VoiceC on distortion knob uses the same delay() function as Voice B

18

Voice C is an octave higher in frequency than Voice B
Voice C is used to distort Voices A and B as controlled by the Distortion knob
with the switch in the up position.

*/

//

// CONSTANTS and Variables
// i
//

// ANALOG INPUTS

//

#define SLIDER1 AS //top left

#define SLIDER2 A3 //bottom left

#define SLIDER3 A4 //top right

#define SLIDER4 A2 //bottom right

int sliderl = 0;

int slider2 = 0;

int slider3 = 0;

int slider4 = 0;

//

//DIGIITAL SWITCHES

//

#define SWITCH1 5 //top toggle switch

#define SWITCH2 4 //bottom toggle switch

#define SWITCH3 6 //right pushbutton switch
#define SWITCH4 7 //left pushbuttun switch
boolean switchl = 0;

boolean switch2 = 0;

boolean switch3 = 0;

boolean switch4 = 0;

#define VOICEPIN_A 8 //pot 4 on box right side
#define VOICEPIN_B 9 //pot 5 on box right side
#define VOICEPIN_C 1@ //Modulating Voice (white knob on box left side, and switch up)
#define LED1 1 //top toggle switch's LED

#define LED2 @ //bottom toggle switch's LED

unsigned int freq = 50;
unsigned int lastfreq = 50;

bool bb = 1;

bool cc = 1;

//

// SETUPO

I e e e e e e e 8 S S S P N N NS
void setup() {

pinMode(LED1, OUTPUT);
digitalWrite(LED1, HIGH);
pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);

19

pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); //Switch inputs have external 1@k pulldown resistor
pinMode(SWITCHZ, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

}

//
// Main LOOP
//

void loop() {

bb = !'bb; // toggle the boolean bb value
if (bb){ cc = !lcc; } // toggle the boolean cc value at 1/2 the freq of bb

digitalWrite(VOICEPIN_C, bb);
digitalWrite(VOICEPIN_B, cc);

//slider2 affects freq of Voices B&C
delayMicroseconds(analogRead(SLIDER2) << 1);

// tone() is used to set up VoiceA at freq set by sliderl.
// there is a click whenever the freq value in tone() is changed
// so new freq values are only loaded when sliderl changes more than 10

freq = analogRead(SLIDER1) ;

if (abs(freq - lastfreq) > 10) {
tone(VOICEPIN_A, 40 + freq);
lastfreq = freq;

3

} //End of Loop

Tone Generation with Loop Time

In this second script we use the tone() function for Voice3, the modulating voice, but
dispense with the delay() function used in the previous sketch for the other two voices.
The main loop time is very fast now, measured in microseconds, and is used to generate
Voices 1 and 2.

The frequencies for Voices 1 and 2 can be set with two slide pots independently. Each
voice is given a counter that decrements each time through the main loop, from a value
set by its assigned slider. When the counter reaches zero, the voice pin is toggled and
the slider value is reloaded. The main loop times are now very fast but not consistenly
the same duration, resulting in some voice frequency jitters and phasing, mostly
affecting the higher frequencies with the lower counter values.

20

The main loop time is now too fast for the tone() function, so Voice3 frequency changes
from its assigned slider value are limited to taps on one of the pushbutton switches.

/%
3-VOICE ARDUINO SYNTHESIZER

3 squarewave tones produced from Arduino pins

Slider3 - Sets Frequency of Tone3 with arduino tone(), used as the modulating voice
Sliderl - Sets Frequency of Tonel
Slider2 - Sets Frequency of Tone2

Switchl - turns off or on Tonel slider adjustments
Switch2 - turns off or on Tone2 slider adjustments
Switch3 - Loads slider value for modulating voice

Arduino's tone() function can only be used to set up a squarewave on one output.
Arduino's tone() function also will stop working if loaded faster than every 50ms
Arduino's tone() function pops when loaded with the same freq value.

Two voices are created from a fast loop clock decrementing two freq values and toggling voice outputs
when they reach zero. The freq values determine the pitch of the voices. Voice pitches are

dlso affected by any changes in the main program loop speed (other voices changing frequencies or
going in or out of IF statements). Higher frequencies affected more than lower. Changes in the loop
time cause phasing between the two voices.

*/
//
// CONSTANTS and Variables
//
//
//
// ANALOG INPUTS
//

const int Sliderl
const int Slider2 = A3;
const int Slider3 = A4;
const int Slider4 = A2;

AS5;

int sliderl
int slider?2
int slider3
int slider4 =

LI [
[(SESTSR S

e v we we

//
//DIGIITAL SWITCHES
//

const int Switchl =
const int Switch2 =
const int Switch3 =
const int Switch4 =

~NOoO A~ U

boolean switchl
boolean switch?2
boolean switch3
boolean switch4

]
[SEISI S

)
)
b
)

const int VoicePinA = 8
const int VoicePinB = 9
1

H
const int VoicePinC = 10;

21

const int LED1 = 1;
const int LED2 = 0;

unsigned int freql = 50;
unsigned int freq2 = 50;
unsigned int freq3 = 50;
unsigned int freqlsave = 50;
unsigned int freg2save = 50;
unsigned int dummy = 50;
boolean lastSwitch = 0;

//

// SETUPO)
//

void setup() {

pinMode(LED1, OUTPUT); //turn on LED1 as power indicator
digitalWrite(LED1, HIGH);

pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VoicePinA, OUTPUT);
digitalWrite(VoicePinA, LOW);
pinMode(VoicePinB, OUTPUT);
digitalWrite(VoicePinB, LOW);
pinMode(VoicePinC, OUTPUT);
digitalWrite(VoicePinC, LOW);

pinMode(Switchl, INPUT); // Set up switch inputs with pullup resistor
pinMode(Switch2, INPUT);
pinMode(Switch3, INPUT);
pinMode(Switch4, INPUT);

} //End of Setup

void loop() {
//keep loop time as low as possible for better voice ranges, limit analogReads

switch4 = digitalRead(Switch4);
//used to load slider3 setting for modulating voice frequency

if ((switch4 == 0) && (lastSwitch == 1)){
// loads only on high to low switch transition (edge)

tone(VoicePinC, 50 + (analogRead(Slider3) << 2));
lastSwitch = 0;

}

else if ((switch4 == 1) && (lastSwitch == 0)){
lastSwitch = 1;

}

--freql; //toggle voicePinA at end of freql countdown
if (freql <= 0){

22

digitalWrite(VoicePinA, !digitalRead(VoicePinA));
freql = freqlsave;

if (digitalRead(Switch2)){ // turn off or on VoicePinA frequency adjustments, hold a pitch
fregqlsave = 2 + (analogRead(Slider2) << 1);
}
}

--freq2; //toggle voicePinB at end of freg2 countdown
if (freq2 <= 0){
digitalWrite(VoicePinB, !digitalRead(VoicePinB));
freq2 = freq2save;

if (digitalRead(Switchl)){ // turn off or on VoicePinB frequency adjustments
freg2save = 2 + (analogRead(Sliderl) << 1);

Tone Generation with Timer

This next sketch illustrates how to set up an interrupt timer on an Atmel SAMD?21
Arduino board (MKR Zero) with an ARM Cortex M0+ processor. Hidden from the
Arduino IDE documentation for regular users is a CMSIS library that allows the
programmer to manipulate SAMD21 registers directly. This is dangerous stuff prone to
crashing and "bricking" the processor. Here it is used to set up timers and interrupts.
This is not an easy thing to do and basically involves hacking into the internal workings
of the SAMD?21. Thanks is due to Michael Blank for delving into the ARM Cortex
manuals to create his TIMERS library on which this sketch is based.

The last sketch was beset with voice frequency fluctuations caused by a loop time that
was not consistent. We can avoid using the loop time and instead set up an internal
register decremented by a rock steady internal clock, our own internal timer. During the
time the internal register decrements our own script can go about its business checking
switches and loading slide values without affecting this internal timer. Once it reaches
zero an interrupt ocurrs and all script business is temporarily halted so that a short
interrupt routine can be performed. Within this interrupt routine the three voice counters
are decremented and the voice pins are toggled when the counters reach zero, the same
program scheme used in the previous sketch.

/*

* 3-VOICE ARDUINO SYNTHESIZER USING TIMER INTERRUPTS

23

3 squarewave tones produced from Arduino pins

Slider3 - Sets Frequency of Tone3 used as the modulating voice
Sliderl - Sets Frequency of Tonel
Slider2 - Sets Frequency of Tone2

Switchl - turns off or on Tonel slider adjustments
Switch2 - turns off or on Tone2 slider adjustments
Switch4 - Loads slider value for modulating voice

Voices are created from a master timer interrupt.

The interrupt function is run at regular intervals as set by a very high speed timer.
The timed interrupt function decrements freq values and toggles digital pin outputs
when they reach zero. Freq values determine the pitch of the voices and are varied from sliders.

This sketch illustrates how to set up a timer on an Atmel SAMD21 based Arduino board (MKR Zero)
based on the ARM Cortex M@+. The Arduino IDE includes the CMSIS

library for working with the SAMD21 registers directly. Here it is used to set up timers and
interrupts.

Thanks to:
Timer5 library for Arduino Zero and MKR1000
(only for SAMD arch.)
Copyright (c) 2016 Michael Blank, OpenSX. All right reserved.

based on the code of the AudioZero library by:

Arturo Guadalupi <a.guadalupi@arduino.cc>

Angelo Scialabba <a.scialabba@arduino.cc>

Claudio Indellicati <c.indellicati@®arduino.cc> <bitron.it@gmail.com>
*/

uint32_t sampleRate = 20000; //sample rate, determines how often TC5_Handler is called
//

// ANALOG INPUTS

//

#define SLIDER1 A5

#define SLIDERZ2 A3

#define SLIDER3 A4

#define SLIDER4 A2

int sliderl = 0;
int slider2 = 0;
int slider3 = 0;
int slider4 = 0;

//

//DIGIITAL SWITCHES
//

#define SWITCH1 5
#define SWITCHZ 4
#define SWITCH3 6
#define SWITCH4 7

boolean switchl
boolean switch2
boolean switch3
boolean switch4

(SIS

#define VOICEPIN_A 8
#define VOICEPIN_B 9
#define VOICEPIN_C 10

24

#define LED1 1
#define LED2 0

volatile int freql
volatile int freq2
volatile int freqg3

50;
50;
50;

volatile int freqlsave
volatile int freqg2save
volatile int freg3save
unsigned int load = 50;

50;

]
(9]
S

50;

unsigned int swtch = 0;

//

void setup(Q) {
delay(1000);

pinMode(LED1, OUTPUT); //turn on LED1 as power indicator
digitalWrite(LED1, HIGH);

pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); // Set up switch inputs with pullup resistor
pinMode(SWITCH2, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);
tcConfigure(sampleRate); //configure the timer to run at <sampleRate>Hertz
tcStartCounter(); //starts the timer
3

//

void loop() {

//tcDisable(); //This function can be used anywhere if you need to stop/pause the timer
//tcReset(); //This function should be called everytime you stop the timer

--load; //Slider readings are limited since they cause noise in the higher voice frequencies.
if (load <= 0){

++swtch;
if (swtch >=4){ swtch = 1; }

switch (swtch) {
case 1:
if (digitalRead(SWITCH1)){
freg2save = 2 + (analogRead(SLIDER1) >> 1);

25

}
break;
case 2:
if (digitalRead(SWITCH2)){
freqlsave = 2 + (analogRead(SLIDER2) >> 2);
h
break;
case 3:
if (digitalRead(SWITCH4)){
freq3save = 2 + (analogRead(SLIDER3) >> 1);

}
break;
}
load = 300;
3
}
//

//this function gets called by the interrupt at a high <sampleRate>Hertz
// "TC5_Handler" is in the C(MSIS library, doesn't need to be declared as an interrupt handler.

void TC5_Handler (void) {

--freql; //toggle voicePinA at end of freql countdown
if (freql <= 0){
digitalWrite(VOICEPIN_A, !digitalRead(VOICEPIN_A));
freql = freqlsave;

--freq2; //toggle voicePinB at end of fregq2 countdown
if (freq2 <= 0){
digitalWrite(VOICEPIN_B, !digitalRead(VOICEPIN_B));
freq2 = freg2save;

--freqg3;

if (freg3 <= 0){
digitalWrite(VOICEPIN_C, !digitalRead(VOICEPIN_C));
freq3 = freq3save;

}

TC5->COUNT16.INTFLAG.bit.MCO = 1;
//Writing a 1 to INTFLAG.bit.MCQ clears the interrupt so that it will run again

}

//

/*
* TIMER SPECIFIC FUNCTIONS FOLLOW
* you shouldn't change these unless you know what you're doing
*/

//Configures the TC to generate output events at the sample frequency.
//Configures the TC in Frequency Generation mode, with an event output once
//each time the audio sample frequency period expires.

void tcConfigure(int sampleRate)

{
// Enable GCLK for TCC2 and TC5 (timer counter input clock)

//drive the timer from General Clock @ (CPU clock) and enable the peripheral clock.

// GCLK1 is 32kHz while GCLKO is 48MHz

26

GCLK->CLKCTRL.reg = (uintl6e_t) (GCLK_CLKCTRL_CLKEN I // Enable clock

GCLK_CLKCTRL_GEN_GCLK® | // Select GCLK@ (is 48MHz)
GCLK_CLKCTRL_ID(GCM_TC4_TC5)) ; // Feed GCLK3 to TC4 and TC5
while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization

//accounts for the need to synchronize between different clocks in the chip before using the changed
value.

tcReset(); //resets the timer TC5 settings.

TC5->COUNT16.CTRLA.reg |= TC_CTRLA_MODE_COUNT16; // Set TC5 Timer counter to be in 16 bit mode and
generate a frequency.

TC5->COUNT16.CTRLA.reg |= TC_CTRLA_WAVEGEN_MFRQ; // Set TC5 mode as match frequency
TC5->COUNT16.CTRLA.reg |= TC_CTRLA_PRESCALER_DIV1 | // Set TC5 prescaler to 1 (can be any power of 2)

TC_CTRLA_ENABLE; // Set TC5 clock enable
TC5->COUNT16.CC[@].reg = (uintle_t) (SystemCoreClock / sampleRate - 1);
while (tcIsSyncing()); // Wait for TC5 synchronization

//set TC5 timer counter based off of the system clock (48MHZ) and the user defined sample rate or
waveform
// higher sampleRate value results in more frequent interrupts.

// Configure interrupt request
NVIC_DisableIRQ(TC5_IRQn);
NVIC_ClearPendingIRQ(TC5_IRQn);
NVIC_SetPriority(TC5_IRQn, 0);
NVIC_EnableIRQ(TC5_IRQn);

// Enable the TC5 interrupt request
TC5->COUNT16.INTENSET.bit .MCO = 1;

while (tcIsSyncing()); //wait until TC5 is done syncing
}

//Function that is used to check if TC5 is done syncing
//returns true when it is done syncing
bool tcIsSyncing()
{

return TC5->COUNT16.STATUS.reg & TC_STATUS_SYNCBUSY;
}

//This function enables TC5 and waits for it to be ready
void tcStartCounter()

{
TC5->COUNT16.CTRLA.reg |= TC_CTRLA_ENABLE; //set the CTRLA register
while (tcIsSyncing()); //wait until snyc'd

27

//Reset TC5

void tcReset()

{
TC5->COUNT16.CTRLA.reg = TC_CTRLA_SWRST;
while (tcIsSyncing());
while (TC5->COUNT16.CTRLA.bit.SWRST);

}

//disable TC5

void tcDisable()

{
TC5->COUNT16.CTRLA.reg &= ~TC_CTRLA_ENABLE;
while (tcIsSyncing());

This Tone Generation script operates like the previous script except that it uses the
Timer5 Library created by Michael Blank.

/*
3-VOICE ARDUINO SYNTHESIZER

Uses the library Timer5Lib to set up a timer interrupt routine
3 squarewave tones produced from Arduino pins
Slider3 - Sets Frequency of Tone3 used as the modulating voice

Sliderl - Sets Frequency of Tonel
Slider2 - Sets Frequency of Tone2

Switchl - turns off or on Tonel slider adjustments
Switch2 - turns off or on Tone2 slider adjustments

Three voices are created from a timer interrupt, decrementing 3 freq values and toggling voice outputs
when they reach zero. Freq values determine the pitch of the voices. Voice pitches are

also affected by any changes in the main program loop speed (other voices changing frequencies or
loading slider and swtich values). Higher frequencies affected more than lower. Changes in the loop
time causes phasing between the two voices.

*/
//
// CONSTANTS and Variables

T s st s e e e e e e e S S S I
//

//

// ANALOG INPUTS

//

28

const int Sliderl
const int Slider2
const int Slider3
const int Slider4

AS5;
A3;
A4,
A2;

int sliderl
int slider2
int slider3
int slider4 =

o n
[SESIS RS

e we we we

//
//DIGIITAL SWITCHES
//

const int Switchl =
const int Switch2 =
const int Switch3 =
const int Switch4

NOoO Ul

e v

boolean switchl
boolean switch2
boolean switch3
boolean switch4 =

[SESIR S

)
b
)
’

const int VoicePinA = 8;
const int VoicePinB = 9;
const int VoicePinC = 10;
const int LED1 = 1;
const int LED2 = 0;

volatile int freql = 50;
volatile int freq2 = 50;
volatile int freq3 = 50;

volatile int freqlsave = 50;
volatile int freq2save = 50;
volatile int freqg3save = 50;
unsigned int load = 50;

boolean lastSwitch = 0;
#include "Timer5.h"

//

// SETUPO
//

void setup() {
delay(1000);

pinMode(LED1, OUTPUT); //turn on LED1 as power indicator
digitalWrite(LED1, HIGH);

pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VoicePinA, OUTPUT);
digitalWrite(VoicePinA, LOW);
pinMode(VoicePinB, OUTPUT);
digitalWrite(VoicePinB, LOW);

29

pinMode(VoicePinC, OUTPUT);
digitalWrite(VoicePinC, LOW);

pinMode(Switchl, INPUT); // Set up switch inputs with pullup resistor
pinMode(Switch2, INPUT);
pinMode(Switch3, INPUT);
pinMode(Switch4, INPUT);

// define frequency of interrupt
MyTimer5.begin(15000); // 200=for toggle every 5Smsec

// define the interrupt callback function
MyTimer5.attachInterrupt(timerInterrupt);

// start the timer
MyTimer5.start();
} //End of Setup

//
// MAIN LOOP
//

void loop() { //keep loop time as low as possible for better voice ranges, limit analogReads

--load; //Do all the reads every 1000 times through the loop. Causes some pops and fuzzyness
//to the output tones, since it stretches one cycle time of the tones periodically
//Switches used to stop and start analogReads - a hold frequency function.

if (load <= @){

if (digitalRead(Switchl)){
freg2save = 2 + (analogRead(Sliderl) >> 2);
}

if (digitalRead(Switch2)){
freqlsave = 2 + (analogRead(Slider2) >> 2);
}

freg3save = 2 + (analogRead(Slider3) >> 1);

load = 10000;

¥

//
// END OF MAIN LOOP
//

void timerInterrupt(void){

--freql; //toggle voicePinA at end of freql countdown
if (freql <= 0){

digitalWrite(VoicePinA, !digitalRead(VoicePinA));

freql = freqlsave;

--freq2; //toggle voicePinB at end of freg2 countdown
if (freq2 <= 0){
digitalWrite(VoicePinB, !digitalRead(VoicePinB));
freq2 = freq2save;

30

--freqg3;

if (freg3 <= 0){
digitalWrite(VoicePinC, !digitalRead(VoicePin(C));
freq3 = freqg3save;

}

MIDI Output

A traditional MIDI Out 5-pin DIN socket is very easy to implement on the MKR Zero.
The Zero has an extra set of serial interface pins that can be used for MIDI. Connect the
TX pin (D14) to pin 5 of the MIDI socket and connect pin 4 of the socket to a 220 ohm
resistor and then to the 3.3 volt output pin of the Zero. In the sketch Setup, MIDI is
initialized with the line "Seriall.begin(31250)" where 31250 is the MIDI baud rate. Then
the command Seriall.write() is used to feed the MIDI output with the appropriate MIDI
data bytes.

The first sketch here demonstrates a simple MIDI output application. The second sketch
1s a performance program that outputs clouds of random notes controlled by the sliders
and switches. It demonstrates a way to share three sliders with 3 separate voices
controlling a total of 9 parameters.

The MIDI Input circuit is a bit more involved as shown the previous circuit diagram.
MIDI Input software is set up like an interrupt. The Arduino Midi Library uses
something called 'Callbacks'. When a Midi event occurs, the Library will Call a
function to handle it.

/*
Simple MIDI output player for Seriall

Generates a series of 12 MIDI notes.
The melody is Steve Reich's "Piano phase"

Uses Seriall for MIDI, so will work on any board
with 2 hardware serial ports: MKR boards, Leonardo, Micro, or Yun

On the MKR Zero TX is D14, RX is D13

Circuit:
connect TX of Seriall to pin5 of MIDI jack
and connect pin4 of MIDI jack to a 220 ohm resistor to 3.3v power
*/
//
// CONSTANTS and Variables
//

//
// ANALOG INPUTS

31

//

#define SLIDER1 A5 //top left
#define SLIDER2 A3 //bottom left
#define SLIDER3 A4 //top right
#define SLIDER4 A2 //bottom right

int sliderl
int slider2
int slider3
int slider4 =

o n
[SESIS RS

e we we we

//

//DIGIITAL SWITCHES

//

#define SWITCH1 5 //top toggle switch
#define SWITCH2 4 //bottom toggle switch
#define SWITCH3 6 //right pushbutton switch
#define SWITCH4 7 //left pushbuttun switch

boolean switchl
boolean switch2
boolean switch3
boolean switch4 =

[SESIR S

#define VOICEPIN_A 8 //pot 4 on box right side
#define VOICEPIN_B 9 //pot 5 on box right side
#define VOICEPIN_C 10 //Modulating Voice (white knob on box left side, and switch up)

#define LED1 1 //top toggle switch's LED
#define LED2 @ //bottom toggle switch's LED

int bpm = 72; // beats per minute
// duration of a beat in ms
float beatDuration = 60.0 / bpm * 1000;

// the melody sequence:

int melody[] = {64, 66, 71, 73, 74, 66, 64, 73, 71, 66, 74, 73},
// which note of the melody to play:

int noteCounter = 0;

//
// SETUPQ)
//

void setup() {
delay(1000);

// initialize MIDI serial:
Seriall.begin(31250); //MIDI rate

pinMode(LED1, OUTPUT);
digitalWrite(LED1, HIGH);
pinMode(LED2, OUTPUT);
digitalWrite(LED2, HIGH);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

32

pinMode(SWITCH1, INPUT); //Switch inputs have external 10k pulldown resistor
pinMode(SWITCH2, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

}

// oo
// Main LOOP

void loop() {
// play a note from the melody:
midiCommand(@x90, melody[noteCounter], 127);

// Choose one of the follow note durations by uncommenting it:
//

// all the notes in this are sixteenth notes,
// which is 1/4 of a beat, so:
//int noteDuration = beatDuration / 4;

//or choose tempo set by sliderl
int noteDuration = map(analogRead(SLIDER1), 0, 1024, 50, 1000);
//

// keep it on for the appropriate duration:
delay(noteDuration);

// turn the note off:

midiCommand(@x90, melody[noteCounter], @);

// increment the note number for next time through the loop:
noteCounter++;

// keep the note in the range from @ - 11 using modulo:
noteCounter = noteCounter % 12;

} //End of Main Loop
//

// Functions
[s e e N N 8 P N S N

// send a 3-byte midi message

void midiCommand(byte cmd, byte datal, byte data2) {
Seriall.write(Ccmd); // command byte (should be > 127)
Seriall.write(datal); // data byte 1 (should be < 128)
Seriall.write(data2); // data byte 2 (should be < 128)

}

void loadSensors(){ // load all current sensor values
sliderl = analogRead(SLIDER1) ;
slider2 = analogRead(SLIDER2) ;
slider3 = analogRead(SLIDER3) ;
slider4 = analogRead(SLIDER4) ;

switchl = digitalRead(SWITCH1);
switch2 = digitalRead(SWITCH2);
switch3 = digitalRead(SWITCH3);
switch4 = digitalRead(SWITCH4);

33

/*
MIDI 3-voice random notes

For each of 3 voices, the sliders can change Frequency Base, Frequency Range,

Note Amplitude and Note Duration. Since there are only 4 sliders, Slider 4

is used for Note Duration, and sliders 1, 2, and 3 are shared between the 3 voices
to affect Base, Range, and Amplitude.

Two toggle switches determine which of the 3 voices is affected by the first 3 sliders.

A Slider position is divided into 5 ranges. Each of the 5 slider ranges is assignhed an
increment value of +2, +1, @, -1, or -2. Each time through the main program loop
the Note parameter is incremented (or decremented) by the value assigned to that slider position.

Sliders set in the middle have an increment value of zero, resulting in no
change to any note parameters.

Uses Seriall for MIDI, so will work on any board
with 2 hardware serial ports: MKR boards, Leonardo, Micro, or Yun

On the MKR Zero TX is D14, RX is D13

Circuit:

connect TX of Seriall to pin5 of MIDI jack

and connect pin4 of MIDI jack to a 220 ohm resistor to 3.3v power
*/
//
// CONSTANTS and Variables
//
//
// ANALOG INPUTS
//
#define SLIDER1 AS //top left
#define SLIDER2 A3 //bottom left
#define SLIDER3 A4 //top right
#define SLIDER4 A2 //bottom right

int sliderl =
int slider2
int slider3
int slider4

]
[SESISR S

//

//DIGIITAL SWITCHES

//

#define SWITCH1 5 //top toggle switch
#define SWITCH2 4 //bottom toggle switch
#define SWITCH3 6 //right pushbutton switch
#define SWITCH4 7 //left pushbuttun switch

boolean switchl
boolean switch?2
boolean switch3
boolean switch4 =
int swtchCombo = 0;

’
)
’
)

]
[SESISIS]

#define VOICEPIN_A 8 //pot 4 on box right side
#define VOICEPIN_B 9 //pot 5 on box right side
#define VOICEPIN_C 10 //Modulating Voice (white knob on box left side, and switch up)

#define LED1 1 //top toggle switch's LED
#define LED2 @ //bottom toggle switch's LED

34

//
// 3-VOICE VARIABLES

//

int dur = 200;

int durA = 0;

int durB = 0;

int durC = 0;

int baseA = 0;

int baseB = 0;

int baseC = 0;

int baseAincrement = 0;
int baseBincrement = 0;

int baseCincrement = 0;

int rangeA = 0;
int rangeB = 0;
int rangeC = 0;

int rangeAincrement =
int rangeBincrement = 0;
int rangeCincrement = 0

S

int fregA
int freqgB
int freqC

50;
75;
100;

int ampA = 0;
int ampB = 0;
int ampC = 0;

int ampAincrement
int ampBincrement
int ampCincrement = 0;

I
(SIS

//
// SETUPQ)
//

void setup() {
delay(1000);

// initialize MIDI serial:
Seriall.begin(31250);

pinMode(LED1, OUTPUT);
digitalWrite(LED1, HIGH);
pinMode(LED2, OUTPUT);
digitalWrite(LED2, HIGH);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); //Switch inputs have external 10k pulldown resistor
pinMode(SWITCHZ2, INPUT);

35

pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

}

//
// Main LOOP
//

void loop() {
delay(1);
loadSensors();
zeroIncrements();
swtchCombo = switchCombo();

switch (swtchCombo){ //sliders affect voice set by switches
case 1:
baseAincrement = sliderIncrement(sliderl);
rangeAincrement = sliderIncrement(slider2);
ampAincrement = sliderIncrement(slider3);
break;

case 2:
baseBincrement = sliderIncrement(sliderl);
rangeBincrement = sliderIncrement(slider2);
ampBincrement = sliderIncrement(slider3);
break;

case 3:
baseCincrement = sliderIncrement(sliderl);
rangeCincrement = sliderIncrement(slider2);
ampCincrement = sliderIncrement(slider3);
break;

default:
break;

if (durA > @){ --durA; } //wait for a count of durA
else{ // when envelope reaches zero, reset voice A with new frequency and envelope

midiCommand(@x90@, fregA, @); //turn off note

baseA = baseA + baseAincrement; //get new pitch base for voice A
baseA = constrain(baseA, 20, 100);

rangeA = rangeA + rangeAincrement; //get new pitch range for voice A
rangeA = constrain(rangeA, 0, 50);

fregA = fregA + random(rangeA); //calculate new pitch for voice A
fregA = constrain(fregA, 20, 100); //MIDI note constraints

ampA
ampA

ampA + ampAincrement; //get amp for voice A
constrain(baseA, @, 127); //MIDI note velocity constraints

36

durA = random(200, 200 + slider4) ; // get random duration

midiCommand(0x90@, fregA, ampA); //turn on new note

if (durB > @){ --durB; } //wait for a count of durB
else{ // when envelope reaches zero, reset voice A with new frequency and envelope

midiCommand(@x90@, fregB, @); //turn off note

baseB = baseB + baseBincrement; //get new pitch base for voice B
baseB = constrain(baseB, 20, 100);

rangeB = rangeB + rangeBincrement; //get new pitch range for voice B
rangeB = constrain(rangeB, @, 50);

fregB = fregB + random(rangeB); //calculate new pitch for voice B
fregB = constrain(freqgB, 20, 100); //MIDI note constraints

ampB = ampB + ampBincrement; //get amp for voice B
ampB = constrain(baseB, @, 127); //MIDI note velocity constraints

durB = random(200, 200 + slider4) ; // get random duration

midiCommand(@x90, freqB, ampB); //turn on new note

if (durC > @){ --durC; } //wait for a count of durC
else{ // when envelope reaches zero, reset voice A with new frequency and envelope

midiCommand(@x9@, freqC, @); //turn off note

baseC = baseC + baseCincrement; //get new pitch base for voice C
baseC = constrain(baseC, 20, 100);

rangeC = rangeC + rangeCincrement; //get new pitch range for voice C
rangeC = constrain(rangeC, @, 50);

freqC = freqC + random(rangeC); //calculate new pitch for voice C
freqC = constrain(freqC, 20, 100); //MIDI note constraints

ampC = ampC + ampCincrement; //get amp for voice A
ampC = constrain(baseC, @, 127); //MIDI note velocity constraints
durC = random(200, 200 + slider4) ; // get random duration

midiCommand(0x90@, freqC, ampC); //turn on new note

if (switch3 == 1){ delay(250); }
} // End of Loop

37

// send a 3-byte m

Functions

idi message

void midiCommand(byte cmd, byte datal, byte data2) {

d); // command byte (should be > 127)
tal); // data byte 1 (should be < 128)
ta2); // data byte 2 (should be < 128)

Seriall.write(cm
Seriall.write(da
Seriall.write(da

}

void loadSensors()
sliderl =
slider2 =
slider3 =
slider4 =
switchl = di
switch2 = di
switch3 = di
switch4 = di

}

int switchCombo(){

int result = switch2 + (switchl * 2);

switch (result
case 0:
digi
digi
brea
case 1:
digi
digi
brea
case 2:
digi
digi
brea
case 3:
digi
digi
brea
}

return result;

{ // load all current sensor values

analogRead(SLIDER]) ;
analogRead(SLIDER2) ;
analogRead(SLIDER3) ;
analogRead(SLIDER4) ;
gitalRead(SWITCH1);
gitalRead(SWITCH2);
gitalRead(SWITCH3);
gitalRead(SWITCH4);

// set LEDs to reflect switch state, switch down = LED on

)i

talWrite(LED2, LOW);
talWrite(LED1, LOW);
k;

talWrite(LED2, HIGH);
talWrite(LED1, LOW);
k3

talWrite(LED2, LOW);
talWrite(LED1, HIGH);
k;

talWrite(LED2, HIGH);
talWrite(LED1, HIGH);
ks

int sliderIncrement(int slider){ //slider position determines incremental changes

int result;

if((slider <= 600) && (slider > 400)){ result = @; } //do nothing middle state
else if((slider > 800)){ result = 2; } // double increase

else if((slider <= 200)){ result = -2; } // double decrease

else if((slider <= 400) && (slider > 200)){ result = -1; } //single decrease

else { result = 1; } //single increase

return result;

}

void zerolIncrement

(range between 600 and 800)

s(Of{ //set to no incremental changes in freq. base, range and amp

baseAincrement = 0;
rangeAincrement = 0;
ampAincrement = 0;

38

baseBincrement = 0;
rangeBincrement = 0;
ampBincrement = 0;

baseCincrement = 0;
rangeCincrement = 0;
ampCincrement = 0;

Signal Processing with ADC to DACO

The MKR Zero has several 12-bit Analog to digital converters and one 10-bit Digital to
Analog Converter (DAC). In this project pin Al is used as the ADC. Special opamp
circuitry restricts the audio input signal to a range of zero to 3.3 volts before being sent
to pin A1l. Once converted to a stream of digital data the programmer can manipulate it
in any number of ways before sending it back out to DACO (pin A0).

The first sketch simply sends the output of the ADC back out to the DAC without any
processing. The main loop has only these two lines:

sample = analogRead(Al);
analogWrite(AQ@, sample);

As an option, on either side of these two lines, are statements using the Arduino

micros() function designed to calculate and print the time it takes to perform an ADC to
DAC sample conversion. The Arduino ADCs are set up to deal with fairly slow moving
data. The time it normally takes to perform the two ADC/DAC operations turned out to
be 838 microseconds which is a sample rate of 1193Hz. This low sampling rate is
unusable for audio signals.

The fix for this low sampling rate problem is to hack into the ADC clocking registers
and speed up the conversion. This involves searching through the CMSIS library
manuals for the ARM Cortex M0+ ADC operations, or you can do a web search for code
written by good people who have solved this problem.

ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | //Divde 48Khz GCLK by 32 for ADC
while(ADC->STATUS.bit.SYNCBUSY); // Wait for these changes to sync

//Sampling Time Length SAMPLEN (normally 63) allows time for ADC capacitor to charge
ADC->SAMPCTRL.reg = ADC_SAMPCTRL_SAMPLEN(C1); //Set Sampling Time Length to 1

After inserting this code into the script's Setup Section, the sampling time dropped to
around 24 microseconds which is a sampling rate of 42kHz. The GCLK divisor was
dropped to 32 instead of the normal 512, and the Sampling Time Length was dropped

39

from 63 to 1.

/*

Test DACO and ADC1

Send output of ADC1 directly to DACO.

*/

//
//
//

CONSTANTS and Variables

//

// ANAL
//

#define
#define
#define
#define

int sli
int sli
int sli
int sli

//

0G INPUTS

SLIDER1 A
SLIDERZ A
SLIDER3 A
SLIDER4 A

derl
der2
der3
der4 =

o
[SESISR S

e we we we

5
3
4
2

//top left
//bottom left
//top right
//bottom right

//DIGIITAL SWITCHES

//

#define
#define
#define
#define

boolean
boolean
boolean
boolean

#define
#define
#define

#define
#define

int sam
long ti

SWITCH1 5
SWITCHZ 4
SWITCH3 6
SWITCH4 7

switchl
switch2
switch3
switch4

VOICEPIN_
VOICEPIN_
VOICEPIN_

[SESISIS]

A
B
C

//top toggle switch
//bottom toggle switch
//right pushbutton switch
//left pushbuttun switch

8
9
10

//pot 4 on box right side
//pot 5 on box right side
//Modulating Voice (white knob on box left side, and switch up)

LED1 1 //top toggle switch's LED
LED2 @ //bottom toggle switch's LED

ple;
meln;

//
//
//

SETUPQ)

void se

tupO) {

// Serial.begin(500000); //used only for printing samplerate times

pinMode(LED1, OUTPUT);

digitalWrite(LED1, HIGH);

pinMode(LED2, OUTPUT);

digitalWrite(LED2, LOW);

40

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); //Switch inputs have external 10k pulldown resistor
pinMode(SWITCH2, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

// Speed up the ADC Sampling Rate

ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | //Divde 48Khz GCLK by 32 for ADC
ADC_CTRLB_RESSEL_1@BIT; //Set ADC resolution to 10 bits
while(ADC->STATUS.bit.SYNCBUSY); // Wait for these changes to sync
//Sampling Time Length SAMPLEN (normally 63) allows time for ADC capacitor to charge
ADC->SAMPCTRL.reg = ADC_SAMPCTRL_SAMPLEN(1); //Set Sampling Time Length to 1

analogReadResolution(10);
analogWriteResolution(10);

}

//
// Main LOOP
//

void loop() {
// timeIn = micros();

sample = analogRead(Al);
analogWrite(A@, sample);

// timeIn = micros() - timeln;
// Serial.println(timeIn); //print sample rate time in microseconds

} //End of Loop

ADC to DACO - Modulation

Now we can insert some digital signal processing between the ADC and DAC
operations. The next script multiplies the input signal with a calculated triangle
waveform to create a ring modulation output. Slider values are used to adjust the
modulation frequency and depth.

Note that the ADC sample values are unipolar. Any signal processing calculations are
best done on bipolar signals. The ADC values are converted to bipolar with the "sample
minus midPoint" calculation. The signal now swings between plus and minus values
while sitting on zero volts. The multiply is then performed with a bipolar triangle wave.

41

Before being sent to the DAC, the modulated signal is turned back into a unipolar signal.

/*
ADC1 to DACO with triangle modulation

Send output of ADC1l directly to DAC@, one sample each time through the main loop
Sampling frequency determined by loop time.

When Pushbuttonl is down, Sliderl changes frequency of modulation
When Pushbutton2 is down, Slider2 changes depth of modulation (and also frequency)

Thanks to "Arduino Music and Audio Projects" by Mike Cook
*/

[/ s e e P N
// CONSTANTS and Variables
//

//

// ANALOG INPUTS

//

#define SLIDER1 A5 //top left
#define SLIDER2 A3 //bottom left
#define SLIDER3 A4 //top right
#define SLIDER4 A2 //bottom right

int sliderl
int slider?2
int slider3
int slider4

o n
(SIS

//

//DIGIITAL SWITCHES

//

#define SWITCH1 5 //top toggle switch
#define SWITCH2 4 //bottom toggle switch
#define SWITCH3 6 //right pushbutton switch
#define SWITCH4 7 //left pushbuttun switch

boolean switchl
boolean switch2
boolean switch3
boolean switch4 =

]
[SESER S

e e v we

#define VOICEPIN_A 8 //pot 4 on box right side
#define VOICEPIN_B 9 //pot 5 on box right side
#define VOICEPIN_C 1@ //Modulating Voice (white knob on box left side, and switch up)

#define LED1 1 //top toggle switch's LED
#define LED2 @ //bottom toggle switch's LED

int sample;

float mod = 0.5;

float increment = 0.0035 ;
float depthHI = 0.80;

float depthLO = 0.02;

int sampleIn, sampleOut;
int midPoint = 516;

42

void setup() {
delay(1000);
// Serial.begin(9600); //turn on to see mod Waveform

pinMode(LED1, OUTPUT);
digitalWrite(LED1, HIGH);
pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); //Switch inputs have external 10k pulldown resistor
pinMode(SWITCH2, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV512 | //Divde 48Khz GCLK by 512 for ADC
ADC_CTRLB_RESSEL_10BIT; //Set ADC resolution to 10 bits
while(ADC->STATUS.bit.SYNCBUSY); // Wait for these changes to sync

//Sampling Time Length SAMPLEN (normally 63) allows time for ADC capacitor to charge
ADC->SAMPCTRL.reg = ADC_SAMPCTRL_SAMPLEN(1); //Set Sampling Time Length to 1

analogReadResolution(10);
analogWriteResolution(10);

void loop() {

if (digitalRead(SWITCH1)){
float incr = (2.0 + analogRead(SLIDER1))/10000.0; //mod frequency
if (increment < @){increment = -incr;} else{ increment = incr;}

}

if (digitalRead(SWITCH2)){

depthLO = analogRead(SLIDERZ2)/2030.0;
depthHI = 1.0 - depthlLO;

3

//make triangle wave for modulation. Ramp up, Ramp down
mod += increment;
if(mod > depthHI || mod < depthL0){
increment = -increment;
mod += increment;

}

43

//Serial.println(mod, 4); //use Tools/Serial Plotter, turn on Serial in Setup

sampleIn = (analogRead(Al)) - midPoint; //Read ADC input
sampleQut = (float)sampleIn * mod; // Modulation multiply
analogWrite(A@, sampleQut + midPoint); // Write to DACO output

// toggle PA22 (LED2) each sample to check sample rate
// digitalWrite(LED2, !digitalRead(LED2));

} //End of Loop

ADC to DACO - Delay Line

The next script creates a delay. The input samples are loaded into a circular array.
"Circular" just means that the pointers into the array are reset to location zero after
incrementing past the top array element. There are two pointers, an input pointer that
points to the newest sample loaded, and the output pointer that points to the oldest
sample loaded. The ADC fills the array with samples at the input pointer location
incrementing the pointer after each load. The DAC is fed with samples addressed by the
output pointer, incrementing the pointer after each load. At each sample time one new
sample is loaded and one old sample is removed from the array. The delay time in
seconds between the input signal and the output signal is then the array size divided by
the sampling rate.

Feedback is a very useful effect in digital delays where part of the delayed output is
added to the input signal resulting in repeating delay signals. That could be done just as
easily in the script but, in this project, an opamp mixer circuit does it for you with a pot
controlling the amount of feedback.

Arduino Processors have two types of memory. Flash memory holds the program and
SRAM holds all the variables used in the program, which includes our delay array. The
MKR Zero has 32k of SRAM which is rather limited (Arduino Due has 96k of SRAM).
The array elements are defined in the program as "short integers" which are 2 bytes
each. Setting an array size of 10k will use up 20k of that 32k of SRAM. You need to
leave space for other program variables, otherwise the program is likely to crash. A 10k
array is playing it safe and it still gives us several seconds of delay time.

A software reverb is a simple variation of this delay script. Create several more output
pointers at several places within the array and then add these extra samples of different

delay times together to create a reverb effect.

The sampling rate of these signal processing programs is determined by the main loop

44

time. The function micros() can be used to calculate the loop time in microseconds and
print it out using the IDE Print Monitor Tool. The sampling rate is then just the inverse
of the loop time (1/loop-time).

timeIn = micros(Q);
---main loop processing---
timeIn = micros() - timeln;
Serial.println(timelIn);

This running printout of the loop times can also reveal how steady the loop time is and
how it changes with any slider or switches functions within the processing program. Be
aware that these loop-time lines are for testing only, they will adversely affect the sound
output. During normal operation they should be commented out.

If for some reason the sampling rate fluctuates, the same lines could also be used lock in
a steady lower sampling rate.

while(C (micro() - timeIn) < 1/samplerate) { }

The processing programs shown here have fairly good sample rates for audio. We found
the simple ADC to DAC program to have a rate of 42kHz. The standard rate for audio
CDs is only a bit higher than this at 44.1kHz. Adding any processing between the ADC
and DAC, of course, will slow everything down. The delay program was found to have
a sampling rate of 35.7kHz, and the next pitch program has a rate of 29.4kHz. These
rates were also fairly steady. The loop times only fluctuated by one microsecond.

Lower sampling rates become a problem when there are frequencies in the audio input
signal that are higher than one-half the sampling frequency (the Nyquist Rate). These
higher frequencies will "foldover" and show up as "phantom" pitches at (freq - 1/2
sampling-rate). An easy way to hear this happen is with the following setup: Input a
high frequency sinewave with the simple ADC to DAC script loaded. Add the following
line to the main loop.

delayMicroseconds(analogRead(SLIDER1));

This will drastically increase the loop time, lowering the sample rate, when Sliderl is
raised. Also try a square wave which has lots of higher partials.

ADC1 to DACO with buffer delay

Send samples from a live ADC input to an array buffer.
Output older samples from the array to DACO.

45

Switch2 changes the delay by changing the output pointer's offset.
Switchl drastically changes the delay time by adding delayMicroseconds(Sliderl)
to the loop time lowering the sampling rate.

The MKRZero has only 32K bytes of SRAM memory used to store program variables.

The buffer array is limited to less than this size (10k x 2 bytes). The array is circular,
an input pointer and an output pointer are incremented after every sample operation and
wrapped back to point to zero on reaching the top of the array.

The op amp circuit used for this project mixes the input signal with the DAC output
creating a feedback loop.

*/
//
// CONSTANTS and Variables
//

#define BUFFER_SIZE 10000 //10k x 2 bytes = 20k bytes, limited by the 32k SRAM size
short bufferl[BUFFER_SIZE]; // the size of a short is 2 bytes (16 bits)

// ANALOG INPUTS

//

#define SLIDER1 A5 //top left
#define SLIDER2 A3 //bottom left
#define SLIDER3 A4 //top right
#define SLIDER4 A2 //bottom right

//

//DIGIITAL SWITCHES

//

#define SWITCH1 5 //top toggle switch
#define SWITCH2 4 //bottom toggle switch
#define SWITCH3 6 //right pushbutton switch
#define SWITCH4 7 //left pushbuttun switch

(SIS

boolean switchl
boolean switch2
boolean switch3 =
boolean switch4

#define VOICEPIN_A 8 //pot 4 on box right side
#define VOICEPIN_B 9 //pot 5 on box right side
#define VOICEPIN_C 1@ //Modulating Voice (white knob on box left side, and switch up)

#define LED1 1 //top toggle switch's LED
#define LEDZ2 @ //bottom toggle switch's LED

/i
// SETUPO)

void setup() {

// Initialize the buffer contents to all zero
for (int i=0; i<BUFFER_SIZE; i++){
bufferl[i] = 0;
}

Serial.begin(9600); //used only for printing samplerate times
pinMode(LED1, OUTPUT);

digitalWrite(LED1, HIGH);
pinMode(LED2, OUTPUT);

46

digitalWrite(LED2, LOW);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); //Switch inputs have external 10k pulldown resistor
pinMode(SWITCH2, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | //Divde 48Khz GCLK by 32 for ADC
ADC_CTRLB_RESSEL_12BIT; //Set ADC resolution to 12 bits
while(ADC->STATUS.bit.SYNCBUSY); // Wait for these changes to sync

//Sampling Time Length SAMPLEN (normally 63) allows time for ADC capacitor to charge
ADC->SAMPCTRL.reg = ADC_SAMPCTRL_SAMPLENC1); //Set Sampling Time Length to 1

analogReadResolution(12); //sample manipulations are done at higher resolution
analogWriteResolution(1@); //highest resolution of MKRZero DAC

}

//
// Main LOOP
//

void loop() {

static signed int bufferIn = BUFFER_SIZE - 1; //input pointer set to array top

static unsigned int bufferOffset = BUFFER_SIZE - 1; //output offset from input, sets maximum delay
static signed int bufferOut = BUFFER_SIZE - bufferOffset; //output pointer

static signed int sample;

int timeln;

while(1){ // inner loop for higher sample rate
timeIn = micros();

//lowers the sampling rate to increase delay, results in foldover frequencies with larger delays
if (digitalRead(SWITCH2)){ delayMicroseconds(analogRead(SLIDER1) >> 3); }

//set up two different delay times

if (digitalRead(SWITCH1)){
bufferOffset = BUFFER_SIZE - 1; // maximum delay

3
else {bufferOffset = BUFFER_SIZE >> 4; // 1/4 maximum delay

}

sample = analogRead(Al) - 2048; //make audio bipolar, plus and minus with 12 bit resolution
//any multiply or divide operations must be done on bipolar signals with zero offsets

//do any operations on the samples here
bufferl[bufferIn] = sample; //save sample in delay array

sample = bufferl[bufferOut] + 2048; //get output sample, make unipolar
analogWrite(AQ, sample >> 2); //send sample to DACO, 12 to 1@ bit resolution change

// update the two circular array pointers, input and output

47

bufferIn++;
if (bufferIn >= BUFFER_SIZE){ bufferIn = 0; }

bufferOut++;
if (bufferOut >= BUFFER_SIZE) {

bufferOut = bufferIn - bufferOffset ;

if (bufferOut < @){ bufferOut += BUFFER_SIZE;}
3

//timeIn = micros() - timeln;
//Serial.println(timeIn); //print sample rate time in microseconds

} //end of while
} //End of loop

ADC to DACO - Pitch

The final program in this section uses the delay construct to change the output pitch.
The pitch can be lowered an octave by outputting each sample twice to the DAC. The
pitch can be raised an octave by only outputting every other sample in the sample
stream.

Both operations are very effective in changing the pitch but rather noisey since they
cause the output pointer to crash into the input pointer. In the original delay program the
output and input pointers keep the same offset between themselves. They step in
tandom, after each sample is loaded one sample is unloaded. The octave lower operation
makes the movement of the output pointer too slow, and the octave higher operation
makes the movement of the output point too fast. When the input and output pointers
crash the output waveform breaks up because it must skip ahead or back in time to keep
up with the input stream. How often this happens and when is set by the delay time so
that adjusting the delay time can help somewhat in controlling how much noise is
generated.

Thanks to "Arduino Music and Audio Projects" by Mike Cook for all the program ideas
in this section.

/*
ADC1 to DACO with delay and pitch change

Send samples from a live ADC input to an array buffer.
Output older samples from the array to DACO.

48

Switchl sets output pitch an octave lower. Switch2 set output pitch an octave higher.
Switch3 reads Slider3 with a delay value to lower sampling rate.
Switch4 reads Sliderl with a buffer size to help clean up the pitch change.

Thanks to "Arduino Music and Audio Projects" by Mike Cook

*/
//

//
//

CONSTANTS and Variables

#define BUFFER_SIZE 10000 //10k x 2 bytes = 20k bytes, limited by the 32k SRAM size
short bufferl[BUFFER_SIZE]; // the size of a short is 2 bytes (16 bits)

// ANALOG INPUTS

//

#define SLIDER1 AS //top left

#define SLIDER2 A3 //bottom left

#define SLIDER3 A4 //top right

#define SLIDER4 A2 //bottom right

//

//DIGIITAL SWITCHES

//

#define SWITCH1 5 //top toggle switch

#define SWITCHZ2 4 //bottom toggle switch

#define SWITCH3 6 //right pushbutton switch
#define SWITCH4 7 //left pushbuttun switch
boolean switchl = 0;

boolean switch2 = 0;

boolean switch3 = 0;

boolean switch4 = 0;

#define VOICEPIN_A 8 //pot 4 on box right side
#define VOICEPIN_.B 9 //pot 5 on box right side
#define VOICEPIN_C 10 //Modulating Voice (white knob on box left side, and switch up)
#define LED1 1 //top toggle switch's LED

#define LED2 @ //bottom toggle switch's LED

//

// SETUPQ)

//

void setup() {

// Initialize the buffer contents to all zero
for (int i=0; i<BUFFER_SIZE; i++){
bufferl[i] = 0;

}

Serial.begin(9600); //used only for printing samplerate times

pinMode(LED1, OUTPUT);
digitalWrite(LED1, HIGH);
pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);

49

digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); //Switch inputs have external 10k pulldown resistor
pinMode(SWITCHZ2, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | //Divde 48Khz GCLK by 32 for ADC
ADC_CTRLB_RESSEL_12BIT; //Set ADC resolution to 12 bits
while(ADC->STATUS.bit.SYNCBUSY); // Wait for these changes to sync

//Sampling Time Length SAMPLEN (normally 63) allows time for ADC capacitor to charge
ADC->SAMPCTRL.reg = ADC_SAMPCTRL_SAMPLEN(1); //Set Sampling Time Length to 1

analogReadResolution(12); //sample manipulations are done at higher resolution
analogWriteResolution(1@); //highest resolution of MKRZero DAC

}

void loop() {

static signed int bufferIn = BUFFER_SIZE - 1; //input pointer set to array top

static unsigned int bufferOffset = BUFFER_SIZE - 1; //output offset from input, sets maximum delay
static signed int bufferQut = BUFFER_SIZE - bufferOffset; //output pointer

static unsigned int buffersize = BUFFER_SIZE - 1;

static signed int sample;

static signed int delayMicros = 1;

long timeln;

while(1){ // inner loop for higher sample rate

timeIn = micros(Q);

e e e e e e e e S P 8 S P IS
// Two ways to change the delay time

//lowers the sampling rate to increase delay, results in foldover frequencies with larger delays

if (digitalRead(SWITCH3)){ delayMicros = analogRead(SLIDER3) >> 3; }
delayMicroseconds(delayMicros);

//set up different buffer sizes less than max of BUFFER_SIZE

if (digitalRead(SWITCH4)){
buffersize = analogRead(SLIDER1) << 1;
bufferOffset = buffersize - 1;

}
//

sample = analogRead(Al) - 2048; //make audio bipolar, plus and minus with 12 bit resolution
//any multiply or divide operations must be done on bipolar signals with zero offsets

//do any operations on the samples here

bufferl[bufferIn] = sample; //save sample in delay array

50

// Frequency Shift an Octave Lower

if(digitalRead(SWITCH1)){ //save sample in delay array a second time for octave lower output
bufferIn++;
if (bufferIn >= buffersize){ bufferIn = 0; }
bufferl[bufferIn] = sample;
} //End of SWITCH
//

sample = bufferl[bufferOut] + 2048; //get output sample, make unipolar
analogWrite(A@, sample >> 2); //send sample to DAC@, 12 to 1@ bit resolution change

// update the two circular array pointers, input and output

bufferIn++;

if (bufferIn >= buffersize){
bufferOut = bufferIn - bufferOffset ; //line needed when randomly changing bufferOffset
bufferIn = 0;

// Frequency Shift an Octave Higher

if (digitalRead(SWITCH2)){ bufferOut += 2; } //bufferQut reads every other sample for octave higher
else { bufferOut ++ ; }

//

if (bufferOut >= (buffersize)) {
bufferQut = bufferIn - bufferOffset ;
if (bufferOut <= @){ bufferOut += buffersize;}

//timeIn = micros() - timeln;
//Serial.println(timeIn); //print sample rate time in microseconds

} //end of while
} //End of loop

Upgrading to the UDA1334 DAC

It is fairly easy to upgrade the MKR Zero's 10-bit wide DAC with an external 16-bit
stereo DAC board that uses the 128 serial interface and operates at high fidelity audio
sample rates like the standard 44.1Khz. Adafruit sells the UDA1334 DAC for just $7.
This board is supported by three 12S libraries for the Arduino IDE: The Arduino 12S.h
library, the Arduino AudioSound.h library, and the Adafruit Zerol2S.h library.

This DAC excels in producing hi-fidelity stereo audio from the MKR Zero's SD card
reader (using the AudioSound library), or from sketch built waveforms. The next two

51

sketches play back a sinewave, one using the Arduino A2S library and the other using
the Adafruit Zerol2S library. Both libraries initialize the UDA1334 DAC with a user
defined sampling rate and a bit width. The Adafruit library seems to only work with a
bit width of 32.

//
// Connect an I2S DAC or amp (like the UDA1334A) to the Arduino Zero
// and play back simple sine. Using I2S.h library.

//

#include "I2S.h"

#define AMPLITUDE ((1<<15)-1) //32, 24, 16, 8
#define WAV_SIZE 1024
const int sampleRate = 32000; //sample rate for I2S.h

// Define the frequency of music notes
#define C4_HZ 261.63
#define D4_HZ 293.66

// Store basic waveform in memory.
short sine[WAV_SIZE] = {0},

//

void generateSine(short amplitude, short* buffer, short length) {
for (int i=0; i<length; ++i) {
buffer[i] = short(float(amplitude)*sin(2.0*PI*(1.0/length)*i));
}
} //End generateSine
//

void setup() {

// Configure serial port.

// Serial.begin(500000);
// while (!Serial) { delay(1@); } //waits for you to open Serial Monitor
// Serial.println("Zero I2S Audio Tone Generator");

// start I2S at the sample rate with 16-bit wide sample
if (1I2S.begin(I2S_PHILIPS_MODE, sampleRate, 16)) {
Serial.println("Failed to initialize I2S");
while (1); //do nothing if failed

}

// Generate waveforms.
generateSine(AMPLITUDE, sine, WAV_SIZE);

} //End setup

void loop() {

uintl6_t pos = @; //integer position in wave table
float posx; //float calculated position in wave table
short sample = @; //samples from wave table

52

// set output frequency by accessing wavetable at different intervals or "delta"
float delta = (C4_HZ * WAV_SIZE)/float(sampleRate); //wavetable sample interval

int timeln; //for finding sample rate

//

while(1){
// timeIn = micros(); //for printing sample rate time

posx += delta;
if (posx > WAV_SIZE){ posx = posx - WAV_SIZE; }
pos = uint32_t(posx);

sample = sine[pos];

// Serial.println(sample); //Use Serial Plotter to see wave
I2S.write(sample);
I2S.write(sample);

// timeIn = micros() - timeln;
// Serial.println(timeIn); //print sample rate time in microseco

} //End while
} //End loop

//

// Arduino Zero / Feather M@ I2S audio tone generation example.

// Author: Tony DiCola

//

// Connect an I2S DAC or amp (like the UDA1334A) to the Arduino Zero

// and play back simple sine. Using Adafruit_ZeroI2S library.

I e e e e e e e e P N

#include "Adafruit_ZeroI2S.h"

#define SAMPLERATE_HZ 44100// 22.7usec --> 44100, works also at 48000, 88200 (not 96000)
#define AMPLITUDE ((1<<30)-1) //32, 24, 1o, 8
#define WAV_SIZE 512

// Define the frequency of music notes
#define C4_HZ 261.63
#define D4_HZ 293.66

// Store basic waveform in memory.
int32_t sine[WAV_SIZE] = {03,

// Create I2S audio transmitter object.
Adafruit_ZeroI2S iZs;

// s

void generateSine(int32_t amplitude, int32_t* buffer, uintl6_t length) {
for (int i=0; i<length; ++i) {
buffer[i] = int32_t(float(amplitude)*sin(2.0*PI*(1.0/1length)*i));

3
} //End generateSine

53

void setup() {

// Configure serial port.

//
//
/7

Serial.begin(500000);
while (!Serial) { delay(1@); } //waits for you to open Serial Monitor
Serial.println("Zero I2S Audio Tone Generator");

// Initialize the I2S transmitter.
if (!i2s.begin(I2S_32_BIT, SAMPLERATE_HZ)) { //only works with 32_BIT ??
Serial.println("Failed to initialize I2S");
while (1); //do nothing if failed

}

i2s.enableTx();

// Generate waveforms.
generateSine(AMPLITUDE, sine, WAV_SIZE);

} //End setup

void loop() {

uintl6_t pos

= @; //integer position in wave table

float posx; //float calculated position in wave table

int32_t sample

= 0;

// set output frequency by accessing wavetable at different intervals or "delta"
float delta = (C4_HZ * WAV_SIZE)/float(SAMPLERATE_HZ); //wavetable sample interval

int timeIn; //for finding sample rate

//
while(1){
// timeIn = micros(); //for printing sample rate time
posx += delta;
if (posx > WAV_SIZE){ posx = posx - WAV_SIZE; }
pos = uint32_t(posx);
sample = sine[pos];
// Serial.println(sample); //Use Serial Plotter to see wave
i2s.write(sample, sample);
// timeIn = micros() - timeln;
// Serial.println(timeIn); //print sample rate time in microsec

¥} //End while

} //End loop

//

Signal Processing - ADC to UDA1334

54

External hi-fidelity ADC breakout boards like the UDA1334 DAC are hard, if not
impossible, to find. Paring the MKR Zero's ADC with the UDA1334 DAC requires
some compromises. The ADC's 12-bit output must be multiplied by 16 to bring it up to
the DAC's 16-bit levels. This raises the noise floor of the ADC by quite a bit. I found
that raising the SAMPLEN value in the ADC speedup routines from 1 to 16 helps quiet
the noise a bit but that also necessitates a much lower DAC sampling rate.

The next script uses the Arduino 12S library to simply send the output from the
MKR Zero ADC to the UDA1334 DAC. With zero audio input you can experiment
with DAC sample rates and ADC PRESCALER DIVxx and SAMPLEN() values to

find the lowest noise floor.

// Connect an I2S DAC or amp (like the UDA1334A) to the Arduino Zero
// and play back from ADC Al. Using I2S.h library.

//

#include "I2S.h"
const int sampleRate = 16000; //sample rate for I2S.h

void setup() {

// Configure serial port.

// Serial.begin(500000);
// while (!Serial) { delay(1@); } //waits for you to open Serial Monitor
// Serial.println("Zero I2S Audio Tone Generator™);

// start I2S at the sample rate with 16-bits per sample
if (1I2S.begin(I2S_PHILIPS_MODE, sampleRate, 16)) {
Serial.println("Failed to initialize I2S");
while (1); //do nothing if failed
3

// set up speed of ADCs
ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | //Divde 48Khz GCLK by 32 for ADC
ADC_CTRLB_RESSEL_12BIT; //Set ADC resolution to 12 bits
while(ADC->STATUS.bit.SYNCBUSY); // Wait for these changes to sync

//Sampling Time Length SAMPLEN (normally 63) allows time for ADC capacitor to charge
ADC->SAMPCTRL.reg = ADC_SAMPCTRL_SAMPLEN(16); //Set Sampling Time Length to 16

} //End setup

//
void loop() {

signed int sample = 0;
int timeIn; //for finding sample rate

55

while(1){
// timeIn = micros(); //for printing sample rate time

sample = (analogRead(Al) - 2048) << 4; //make bipolar, bring amp up from 12-bit to 16-bit

// Serial.println(sample);
I2S.write(sample); // write twice for left and right outputs
I2S.write(sample);
// timeIn = micros() - timeln;
// Serial.println(timeIn); //print sample rate time in microseconds

} //End while
} //End loop

//

ADC to UDA1334 - Delay Line & Pitch

The previous Delay and Pitch Change scripts used with the DACO are easily revised to
used the UDA1334 DAC instead as shown here. SAMPLEN() was changed from 1 to
16 to lower the noise floor, and the sampling rate for the UDA 1334 was lowered to
10,000Hz to accomodate the longer ADC conversion time and the delay processing.

/*
ADC1 to DACO with buffer delay

Send samples from a live ADC input to an array buffer.
Output older samples from the array to DAC1334 using the I2S library.

If Switchl is up the maximum delay is set up.
If Switchl is down the delay is set by Sliderl.

The MKRZero has only 32K bytes of SRAM memory used to store program variables.

The buffer array is limited to less than this size (12k x 2 bytes). The array is circular,
an input pointer and an output pointer are incremented after every sample operation and
wrapped back to point to zero on reaching the top of the array.

Thanks to "Arduino Music and Audio Projects" by Mike Cook
*/
//
// CONSTANTS and Variables
//

#include "I2S.h"
const int sampleRate = 10000; //sample rate for I2S.h

#define BUFFER_SIZE 8200 //10k x 2 bytes = 20k bytes, limited by the 32k SRAM size
short bufferl[BUFFER_SIZE]; // the size of a short is 2 bytes (16 bits)

// ANALOG INPUTS

//

#define SLIDER1 A5 //top left
#define SLIDERZ2 A3 //bottom left

56

#define SLIDER3 A4 //top right
#define SLIDER4 A2 //bottom right

//

//DIGIITAL SWITCHES

//

#define SWITCH1 5 //top toggle switch
#define SWITCH2 4 //bottom toggle switch
#define SWITCH3 6 //right pushbutton switch
#define SWITCH4 7 //left pushbuttun switch

boolean switchl
boolean switch2
boolean switch3
boolean switch4

o n
[SESISRS]

#define VOICEPIN_A 8 //pot 4 on box right side
#define VOICEPIN_B 9 //pot 5 on box right side
#define VOICEPIN_C 1@ //Modulating Voice (white knob on box left side, and switch up)

#define LED1 1 //top toggle switch's LED
#define LED2 @ //bottom toggle switch's LED

// SETUPQO

void setup() {

// Initialize the buffer contents to all zero
for (int i=0; i<BUFFER_SIZE; i++){
bufferl[i] = 0;
}

// Serial.begin(9600@); //used only for printing samplerate times

pinMode(LED1, OUTPUT);
digitalWrite(LED1, HIGH);
pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); //Switch inputs have external 10k pulldown resistor
pinMode(SWITCH2, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

// Configure serial port.

// Serial.begin(500000);
// while (!Serial) { delay(1@); } //waits for you to open Serial Monitor
// Serial.println("Zero I2S Audio Tone Generator™);

// start I2S at the sample rate with 16-bits per sample
if (1I2S.begin(I2S_PHILIPS_MODE, sampleRate, 16)) {
Serial.println("Failed to initialize I2S");
while (1); //do nothing if failed
3

57

// set up speed of ADCs

ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | //Divde 48Khz GCLK by 32 for ADC
ADC_CTRLB_RESSEL_12BIT; //Set ADC resolution to 12 bits
while(ADC->STATUS.bit.SYNCBUSY); // Wait for these changes to sync

//Sampling Time Length SAMPLEN (normally 63) allows time for ADC capacitor to charge
ADC->SAMPCTRL.reg = ADC_SAMPCTRL_SAMPLEN(16); //Set Sampling Time Length to 16

analogReadResolution(12); //sample manipulations are done at higher resolution
analogWriteResolution(1@); //highest resolution of MKRZero DAC

}

//
// Main LOOP
//

void loop() {

static signed int bufferIn = BUFFER_SIZE - 1; //input pointer set to array top

static unsigned int bufferOffset = BUFFER_SIZE - 1; //output offset from input, sets maximum delay
static signed int bufferQut = BUFFER_SIZE - bufferOffset; //output pointer

static signed int sample;

int timeln;

while(1){ // inner loop for higher sample rate
timeIn = micros(Q);

//set up different delay times
if (digitalRead(SWITCH1)){
bufferOffset = BUFFER_SIZE - (analogRead(SLIDER1) << 1); // variable delay
3
else {
bufferOffset = BUFFER_SIZE - 1; // maximum delay
3

sample = analogRead(Al) - 2048; //make audio bipolar, plus and minus with 12 bit resolution
//any multiply or divide operations must be done on bipolar signals with zero offsets
//do any operations on the samples here
bufferl[bufferIn] = sample; //save sample in delay array
sample = sample + bufferl[bufferOut] << 3 ; //add original plus delayed
// Serial.println(sample);
I2S.write(sample); // write twice for left and right outputs
I2S.write(sample);

// update the two circular array pointers, input and output

bufferIn++;
if (bufferIn >= BUFFER_SIZE){ bufferIn = 0; }

bufferOut++;
if (bufferOut >= BUFFER_SIZE) {
bufferOQut = bufferIn - bufferOffset ;
if (bufferOut < @){ bufferOut += BUFFER_SIZE;}

58

//timeIn = micros() - timeln;
//Serial.println(timeln); //print sample rate time in microseconds

} //end of while
} //End of loop

/*
ADC1 to 1334DAC with delay and pitch change

Send samples from a live ADC input to an array buffer.
Output older samples from the array to DAC1334 using the I2S library.

Switchl sets output pitch an octave lower. Switch2 set output pitch an octave higher.
Switch3 reads Slider3 with a delay value to lower sampling rate.
Switch4 reads Sliderl with a buffer size to help clean up the pitch change.

The op amp circuit used for this project can mix the input signal with the DAC output, and
it can also mix the DAC signal with the ADC input to create feedback
thus the software only needs to create a delay signal.2

Thanks to "Arduino Music and Audio Projects" by Mike Cook
*/

// CONSTANTS and Variables

[/ i

#include "I2S.h"
const int sampleRate = 10000; //sample rate for I2S.h

#define BUFFER_SIZE 10000 //10k x 2 bytes = 20k bytes, limited by the 32k SRAM size
short bufferl[BUFFER_SIZE]; // the size of a short is 2 bytes (16 bits)

// ANALOG INPUTS

//

#define SLIDER1 AS //top left
#define SLIDER2 A3 //bottom left
#define SLIDER3 A4 //top right
#define SLIDER4 A2 //bottom right

//

//DIGIITAL SWITCHES

//

#define SWITCH1 5 //top toggle switch
#define SWITCH2 4 //bottom toggle switch
#define SWITCH3 6 //right pushbutton switch
#define SWITCH4 7 //left pushbuttun switch

boolean switchl
boolean switch2
boolean switch3
boolean switch4 =

o n
[SESIS RS

e we we we

#define VOICEPIN_A 8 //pot 4 on box right side
#define VOICEPIN_B 9 //pot 5 on box right side
#define VOICEPIN_C 10 //Modulating Voice (white knob on box left side, and switch up)

59

#define LED1 1 //top toggle switch's LED
#define LED2 @ //bottom toggle switch's LED

// SETUPQ)

void setup() {

// Initialize the buffer contents to all zero
for (int i=0; i<BUFFER_SIZE; i++){
bufferl[i] = 0;
}

Serial.begin(9600); //used only for printing samplerate times

pinMode(LED1, OUTPUT);
digitalWrite(LED1, HIGH);
pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); //Switch inputs have external 10k pulldown resistor
pinMode(SWITCH2, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

// Configure serial port.

// Serial.begin(500000);
// while (!Serial) { delay(1@); } //waits for you to open Serial Monitor
// Serial.println("Zero I2S Audio Tone Generator™);

// start I2S at the sample rate with 16-bits per sample
if (1I2S.begin(I2S_PHILIPS_MODE, sampleRate, 16)) {
Serial.println("Failed to initialize I2S");
while (1); //do nothing if failed
3

// set up speed of ADCs

ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | //Divde 48Khz GCLK by 32 for ADC
ADC_CTRLB_RESSEL_12BIT; //Set ADC resolution to 12 bits

while(ADC->STATUS.bit.SYNCBUSY); // Wait for these changes to sync

//Sampling Time Length SAMPLEN (normally 63) allows time for ADC capacitor to charge
ADC->SAMPCTRL.reg = ADC_SAMPCTRL_SAMPLEN(1); //Set Sampling Time Length to 1

analogReadResolution(12); //sample manipulations are done at higher resolution
analogWriteResolution(1@); //highest resolution of MKRZero DAC

}

void loop() {

60

static signed int bufferIn = BUFFER_SIZE - 1; //input pointer set to array top

static unsigned int bufferOffset = BUFFER_SIZE - 1; //output offset from input, sets maximum delay
static signed int bufferOut = BUFFER_SIZE - bufferOffset; //output pointer

static unsigned int buffersize = BUFFER_SIZE - 1;

static signed int sample;

static signed int delayMicros = 1;

int timeln;

while(1){ // inner loop for higher sample rate
// timeIn = microsQ);

//
// change the delay time

//set up different buffer sizes less than max of BUFFER_SIZE

if (digitalRead(SWITCH4)){
buffersize = analogRead(SLIDER1) << 1;
bufferOffset = buffersize - 1;

}
//

sample = analogRead(Al) - 2048; //make audio bipolar, plus and minus with 12 bit resolution
//any multiply or divide operations must be done on bipolar signals with zero offsets

//do any operations on the samples here
bufferl[bufferIn] = sample; //save sample in delay array

//
// Frequency Shift an Octave Lower

if(digitalRead(SWITCH1)){ //save sample in delay array a second time for octave lower output
bufferIn++;
if (bufferIn >= buffersize){ bufferIn = 0; }
bufferl[bufferIn] = sample;

} //End of SWITCH

//

sample = bufferl[bufferQut] << 4; //get output sample. 12-bit to 16-bit

// Serial.println(sample);
I2S.write(sample); // write twice for left and right outputs
I2S.write(sample);

// update the two circular array pointers, input and output

bufferIn++;
if (bufferIn >= buffersize){
bufferIn = 0;
}

e e e e e e e e S P 8 S S P S IS
// Frequency Shift an Octave Higher

if (digitalRead(SWITCH2)){ bufferOut += 2; } //bufferOut reads every other sample for octave higher
else { bufferOut ++ ; }

61

if (bufferOut >= (buffersize)) {
bufferOut = bufferIn - bufferOffset ;
if (bufferOut <= @){ bufferOut += buffersize;}

}

//timeIn = micros() - timeln;
//Serial.println(timeln); //print sample rate time in microseconds

} //end of while
} //End of loop

ADC to UDA1334 - Fuzz Distortion

One classic signal processing effect is the Fuzz Box which distorts a signal by clipping
its peaks. The next sketch takes a value from Slider1 and clips the tops and bottoms of
the ADC input signal. Any samples above that Slider1 value, or below negative that

value are ignored and replaced by the set Slider1 value. This is called "Hard Clipping".

A "Soft Clip", with less distortion, can be achieved by replacing the original clipped
samples with the Slider1 value plus a fraction of the sample value so that the peaks of
the ADC input signal are "squished" instead of clipped. The "Squish" or fraction value
is derived from Slider2. This is also known as a Compressor effect.

These sample calculations for the "fuzz" take some time to perform. When the sample
rate set for the UDA3114 DAC is too high to accomodate these calculation times, the
sound output will have high pitched tones or pops and clicks. When this happens,
incrementally lower the sample rate (found at the start of the sketch) until these sound
artifacts disappear. 8kHz was found to work for this program.

To judge the worth of this sample rate consider the Nyquist Frequency at half the
sampling rate. This is the highest frequency the conversion process can pass. 4kHz is
pretty bad considering the range of human hearing is 20Hz to 20,000Hz. For more
realistic markers, my aging ears can just barely hear 12,000Hz, and the top key of a
grand piano is 4186Hz.

The Arduino IDE has a Plotter Function under the Tool Menu that will allow you to see
the output waveform. Just input a low frequency sinewave and watch how the program
clips or squishes the peaks of the waveform as Sliders 1 and 2 are manipulated. To set
this up, uncomment the "Serial.begin()" line under "Setup" and the

62

"Serial.println(sample)" line in the Main Loop, and reload the sketch. The sound output
will be seriously degraded by the extra print function, but you will be able to watch the
program do its work.

/*
ADC1 to DACO with hard and soft clipping

Mathmatically distort samples from a live ADC input before
sending out to DAC1334 using the Adafruit I2S Library.

If switchl is down, hard clip the signal at levels set by sliderl.
If switch2 is down, soft clip the signal, slider2 set level the clipping starts,
slider4 sets amount of clip.

*/
//
// CONSTANTS and Variables
//

#include "I2S.h" //library for 1334 DAC board
#define SAMPLE_RATE 8000

// ANALOG INPUTS

//

#define SLIDER1 A5 //top left
#define SLIDERZ2 A3 //bottom left
#define SLIDER3 A4 //top right
#define SLIDER4 A2 //bottom right
int sliderl // ADC 12 bit zero to 4096
int slider2
int slider3
int slider4 =

0
0
0
0

e e we w

//

//DIGITAL SWITCHES

//

#define SWITCH1 5 //top toggle switch
#define SWITCH2 4 //bottom toggle switch
#define SWITCH3 6 //right pushbutton switch
#define SWITCH4 7 //left pushbuttun switch

boolean switchl
boolean switch?2
boolean switch3
boolean switch4

[SESISR S

e we we woe

#define VOICEPIN_A 8 //pot 4 on box right side
#define VOICEPIN_B 9 //pot 5 on box right side
#define VOICEPIN_C 1@ //Modulating Voice (white knob on box left side, and switch up)

#define LED1 1 //top toggle switch's LED
#define LED2 @ //bottom toggle switch's LED

//
// SETUPQ)

void setup() {

63

// Serial.begin(500000); //used only for testing

pinMode(LED1, OUTPUT);
digitalWrite(LED1, HIGH);
pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); //Switch inputs have external 10k pulldown resistor
pinMode(SWITCH2, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

// start I2S at the sample rate with 16-bits per sample
if (112S.begin(I2S_PHILIPS_MODE, SAMPLE_RATE, 16)) {
Serial.println("Failed to initialize I2S");
while (1); //do nothing if failed

3
// set up speed of ADCs
ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | //Divde 48Khz GCLK by 32 for ADC
ADC_CTRLB_RESSEL_12BIT; //Set ADC resolution to 12 bits
while(ADC->STATUS.bit.SYNCBUSY); // Wait for these changes to sync

//Sampling Time Length SAMPLEN (normally 63) allows time for ADC capacitor to charge
ADC->SAMPCTRL.reg = ADC_SAMPCTRL_SAMPLEN(C16); //Set Sampling Time Length to 16

analogReadResolution(12); //sample manipulations are done at higher resolution
analogWriteResolution(1@); //highest resolution of MKRZero DAC

void loop() {

//static signed int sample;

intle_t sample ;

static int squish = 7; //squish factor
int timeln;

while(1){ // inner loop for higher sample rate

sample = analogRead(Al) - 2048; //make audio bipolar, +/- 2048, with 12 bit resolution
//any multiply or divide operations must be done on bipolar signals with zero offsets

//

[[it HAP A FUZZ sommimimimimimsmimimimimimimsmimimsmimsmimsmimirins

if(digitalRead(SWITCH1)){ //simple fuzz, clip off top and bottom of waveform

64

sliderl = (analogRead(SLIDER1) >> 2) + 20, // slider, 20 to 1024
if (sample > sliderl){ sample = sliderl; } //clip off top of waveform
else if (sample < -sliderl){ sample = -sliderl; } //chop off bottom of waveform
// else middle range of waveform unaltered

} //End of SWITCH
//

//

[mrarmimsririimimsrarmimimirarimimsririimimsrarimsnirarimiririnsSOFt FUZZ mimirir

if(digitalRead(SWITCH2)){ //softer clip, squish top and bottom of waveform

squish = (analogRead(SLIDER4) >> 6) + 5;
slider2 = (analogRead(SLIDER2) >> 2) + 20; // slider, 20 to 1024

if (sample > slider2){

sample = slider2 + ((sample - slider2) / squish); //squish top of waveform

}

else if (sample < -slider2){

sample = -slider2 - ((-slider2 - sample) / squish); //squish bottom of waveform
}

// else middle range of waveform unaltered

1 //End of SWITCH
]/ i AP

sample = sample << 4; // 12-bit to 16-bit

I2S.write(sample); // write twice for left and right outputs
I2S.write(sample);

// Serial.println(sample); //use Serial Plotter to see output waveform, use low freq inputs

} //end of while
} //End of loop

ADC to UDA1334 - Transform Function

The MKR Zero ADC is 12 bits wide which means it can have samples values that range
from zero to 4095. Those samples correspond to voltages from zero volts to a maximum
of 3.3 volts. This is a unipolar signal, or a signal that only has positive values and
voltages. Most audio signals, however, are bipolar. A bipolar signal sits on a voltage
bias of zero volts and swings between both positive and negative voltages. To make the
ADC digital samples bipolar we subtract one half of 4096 from the ADC sample values,
resulting in a new bipolar range of samples from negative 2048 to positive 2048. The
UDA3114 DAC accepts only bipolar digital inputs. However, the UDA3114 DAC has a

65

minimum range of 16 bits. The ADC signal must be multiplied by 16 to get a 16-bit
range of negative 32,768 to positive 32,768. If the ADC is not multiplied by 16, the
DAC output will have much less volume. On the other hand, multiplying by 16 also
raises the inherent noise floor of the ADC by a factor of 16.

Any manipulation of the digital signal can be performed on the 12-bit ADC numbers,
before they are raised in amplitude by a factor of 16. In fact, for most cases, we can
further narrow our range to only the positive values, zero to 2048. In the next script a
function will be devised for the zero to +2048 range of input sample values. The same
calculations can then be applied to the negative range of zero to -2048 samples values.

An equation will be derived from the straight line "transform" function shown on the
graph in the figure below. The x-axis is ADC input sample values from zero to 2047.
The y-axis is DAC output sample values from zero to 2047. The function shown is an
improved version of the "Fuzz" calculation in the last sketch.

For low sample values from zero to a "threshold" the straight line function is very
simple: x =y, or input sample value is equal to the output sample value - no change from
input to output. A threshold value is set by Slider 1 ("a" on the graph) and is the start of a
second straight line function. The end of this second straight line, at sample input =
2047, is set by Slider 2. Let's explore some specific possibilities for this second straight
line function.

If Slider 2 sets a value of y=2047 at x=2047, then this second straight line is just a
continuation of the slope of the first line setting x =y for all possible input sample
values. The rather boring result is that there is no change from the input to the output.

If Slider 2 sets a value that is equal to Slider 1, the threshold, then the second line lies
flat at that same threshold value for all input values from threshold to 2047. Any input
values coming in above the threshold will be ignored and set to equal to that one
threshold value resulting in a clipped waveform, which is our hard clip Fuzz effect from
the last sketch.

If Slider 2 sets an end value between the Slider 1 value and 2047. The output signal
peaks above the threshold will be a "squished" version of the input. The amount of
squish can vary between the two examples described above, from zero squish (x =y,
when Slider2 = 2047) to complete clipping (x = threshold, when Slider2 = Sliderl). This
becomes a type of audio "compressor".

A somewhat unusual case happens when Slider 2 sets an end point below the Slider 1

threshold value resulting in a downward sloping line. In this case the input signal peaks
are compressed, or "squished" as described above, but they are also inverted from the

66

original peaks - an upward hump now becomes a downward hump.

I encourage you to input a low frequency sinewave, uncomment the script's print
functions, turn on the Arduino Plotter function, and watch the results described above
actually happening on the input waveform.

Y = output
y x =2048
A :
I
I
I
I
I
I
I
2-line Transform Function :
I
|
' b =Slider3
_____ Y1 - somele oo DAC _ _ _ __ .Iw_d
threshold a | ------- - ypee=—=—C"__ _____ b m—m !
I
| | !
| (2048-0) ! R
. !
: (x1-a) : :
| | |
1 | > X
a X X = input
a = Slider1 X1 = sample input from ADC P

yl = a+ (X1-a)(b-a)
(2048 - a)

In the sketch below the calculations shown in the graph are implemented. For input
values below the Slider 1 threshold the output value is unchanged. For input values
above the threshold, the equation shown is used to calculate the output sample value.
The same calculations are made separately for the negative going parts of the input
signal.

These calculations are pretty heavy duty and take up quite a lot of processing time
especially since they are floating point calculations. In addition, the script employs a
third Slider to pan between the processed signal and the unprocessed signal, which is
another floating point calculation. This required a lowering of the sampling rate
to10kHz for the UDA3114 DAC in addition to lowering the ADC register SAMPLEN

67

value back to 1.

// Transform Function

// Connect an I2S DAC or amp (like the UDA1334A) to the Arduino Zero

// and play back from ADC Al with signal processing using the I2S.h library.

/*

An input/output transfer function is set up for both the positive and negative going parts of the
signal.

Each possible input sample value, -2048 to @ to +2048, from the 12-bit Al ADC
a different output sample value.
function, as done here.

is translated into
This can be accomplished with a 4096 cell table, or calculated with a

The input/output function is made up of two straight line functions.The first is simple, input equals
output -- no change to input values zero to a value determined by Sliderl. The second straight

line starts at the Sliderl value and ends at a Slider2 value and results in a distortion

of the tops and bottoms of the input waveform.

These straight line functions are mirrored in the negative input values zero to -2048.
Slider 1 and 3 values are applied only when Switchl is down.

Slider2 pans between the input waveform and the distorted output waveform.
The SampleRate can be raised to 16000 if this slow pan calculation is commented out.

#include "I2S.h"
const int sampleRate

10000; //sample rate for I2S.h

signed int a = 0;

signed int b = 0;

signed int sample = 0;

signed int samplex = 0;

float pan = 0;

// ANALOG INPUTS

//

#define SLIDER1 A5 //top left

#define SLIDER2 A3 //bottom left

#define SLIDER3 A4 //top right

#define SLIDER4 A2 //bottom right

//

//DIGITAL SWITCHES

//

#define SWITCH1 5 //top toggle switch
#define SWITCH2 4 //bottom toggle switch
#define SWITCH3 6 //right pushbutton switch
#define SWITCH4 7 //left pushbuttun switch
boolean switchl = 0;

boolean switch2 = 0;

boolean switch3 = 0;

boolean switch4 = 0;

#define VOICEPIN_A 8 //pot 4 on box right side

#define VOICEPIN_B 9

//pot 5 on box right side

68

#define VOICEPIN_C 10 //Modulating Voice (white knob on box left side, and switch up)

#define LED1 1 //top toggle switch's LED
#define LED2 @ //bottom toggle switch's LED

//

void setup() {

// Configure serial port.
// Serial.begin(500000);

pinMode(LED1, OUTPUT);
digitalWrite(LED1, HIGH);
pinMode(LED2, OUTPUT);
digitalWrite(LED2, HIGH);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); //Switch inputs have external 10k pulldown resistor
pinMode(SWITCH2, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

// start I2S at the sample rate with 16-bits per sample
if (1I2S.begin(I2S_PHILIPS_MODE, sampleRate, 16)) {
Serial.println("Failed to initialize I2S");
while (1); //do nothing if failed
3

// set up speed of ADCs
ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | //Divde 48Khz GCLK by 32 for ADC
ADC_CTRLB_RESSEL_12BIT; //Set ADC resolution to 12 bits
while(ADC->STATUS.bit.SYNCBUSY); // Wait for these changes to sync

//Sampling Time Length SAMPLEN (normally 63) allows time for ADC capacitor to charge
ADC->SAMPCTRL.reg = ADC_SAMPCTRL_SAMPLEN(1); //Set Sampling Time Length to 1

} //End setup

//

void loop() {
samplex = analogRead(Al) - 2048;

sample = samplex; //keep samplex as the original input signal

if (digitalRead(SWITCH1)){

a = andalogRead(SLIDER1) »>> 2;

b = analogRead(SLIDER3) >> 2 ;

}

if (sample >= @) { //for positive samples

if (sample > a){ // if sample < a, leave it unchanged
sample = a + (. ((b - a) * (sample - a)) / (2048 - a)) ; //transfer function

69

} //End positive samples

else { //for negative samples

sample = -sample;
if (sample > a){ // if sample < a, leave it unchanged
sample = a + (. ((b - a) * (sample - a)) / (2048 - a)) ; //transfer function
3
sample = -sample;

} //End negative samples

pan
pan

analogRead(SLIDER2) ;
pan / 4@95; //pan is a float between @ and 1

sample = (pan * sample) + ((1 - pan) * samplex); //pan between input and distorted version

// Connect a sinewave to the Al input and use the Serial Plotter to see the output waveform

// Serial.println(sample);
sample = sample << 4; //12-bit to 16-bit size
I2S.write(sample); // write twice for left and right outputs
I2S.write(sample);

} //End loop

//

ADC to UDA1334 - Transform Array

The simplicity and versatility of using an array to transform an audio input signal into
something completely different is hard to pass up. For each possible ADC sample input
value from 0 to 2047 an output DAC sample value can be specified. This is easily
accomplished in software by a 2048 element array. The address of the array element,
from 0 to 2047, comes from sample input value and the addressed array element value

specifies the output value which can be anything from 0 to 2047.

The array function is built for the positive half of the ADC bipolar signal. Only a few
extra lines of code are needed to apply the same function to the negative half of the input

signal.

70

Once the array is built, the input/output program is basically just three lines of code

sample = analogRead(Al) - 2048; // read from ADC and make bipolar
sample = tfunction[sample]; // apply transfer function
I2S.write(sample); // write to the DAC

One example of transform functions was illustrated in the input/output graph from the
previous sketch. The question now becomes how to draw any input/output graph you
desire and then get that function into a 2048 element array.

One possibility would be to couple the MKR Zero with a higher level program such as
Max/MSP or Processing running on another computer, where you could use its graphic
capabilities to actually draw a function using a mouse or graphic pad, translate the
drawing into an array, and send it to the MKR Zero over a serial USB line.

The sketch below uses a simpler method, setting up a routine that records the motion of
a slider to create the function array. The routine uses a switch case control structure to
set up a series of events that are initiated by pressing one of the box pushbuttons. First,
LED]1 blinks three times at a rate of about one blink per second. The user will use this
as a countdown before the actual recording. Next, LED2 will turn on for a second count
of three LED1 blinks during which time the position of Slider3 is recorded 2048 times
over about three seconds. At the end of this count both LEDs turn off, the recording is
finished, and the newly created array is now used in the main loop.

The user is encouraged to read up on audio effects such as fuzz distortion, compression,
sustain, limiter, expander, gate. Find explanations that include input/output graphs.
With some practice with the Slider Record routine you should be able to recreate any of
these effects and many more.

The sketch below also uses a slider to pan between the processed and unprocessed
signal. That may or may not make up for not having Attack and Release functions,
usually included with the above effects.

ADC1 to DAC@ with with Transform Array

Distort live ADC input with a transform array before sending out to DAC1334 using I2S library.
The input signal is treated as bipolar with values -2048, through zero, to +2048
The same transfer array is applied to both positive and negative swings of the input signal.

A 2048 element array is created. Each possible ADC input value from @ to 2048 acts as the array index.
The array elements act as alternative waveform values for each ADC waveform input value.

The array transform function is created manually by moving Slider3 through a count of 3 seconds.

Ledl gives a countdown of 3 one second blips . Led2 then turns on for a second count of 3 Ledl blips
during which 4096 values are recorded from the manual movement of Slider3.

71

Pushbutton3 is used to start the function record countdown process.
Then Output DAC Sample = array[ADC Input Sample]

Sliderl pans between the input waveform and the distorted output waveform.
The SampleRate can be raised to 16000 if this slow pan calculation is commented out.

Switches 1 & 2 turn on the Serial.print function for testing with the Serial Plotter

*/
//
// CONSTANTS and Variables
//

#include "I2S.h" //library for 1334 DAC board
#define sampleRate 10000
#define TDELAY 1300

// ANALOG INPUTS

//

#define SLIDER1 AS //top left
#define SLIDER2 A3 //bottom left
#define SLIDER3 A4 //top right
#define SLIDER4 A2 //bottom right

int sliderl =
int slider2
int slider3
int slider4

// ADC 12 bit =zero to 4096

0
0
0
0

e e e

//

//DIGITAL SWITCHES

//

#define SWITCH1 5 //top toggle switch
#define SWITCH2 4 //bottom toggle switch
#define SWITCH3 6 //right pushbutton switch
#define SWITCH4 7 //left pushbuttun switch

boolean switchl
boolean switch2
boolean switch3
boolean switch4 =

]
[SEIS RS

#define VOICEPIN_A 8 //pot 4 on box right side
#define VOICEPIN_B 9 //pot 5 on box right side
#define VOICEPIN_C 1@ //Modulating Voice (white knob on box left side, and switch up)

#define LED1 1 //top toggle switch's LED
#define LED2 @ //bottom toggle switch's LED

unsigned int t = 0;

unsigned int x = 0;

boolean countdown = 0;

boolean countrecord = 0;

boolean drawfunction = 0;

int blink3[6] = {171, 683, 853, 1365, 1536, 2047%};
int tcase = 7;

int tfunction[2048];

signed int sample = 0

signed int samplex = 0;
float pan = 0;

72

//
// SETUPQ)
//

void setup() {
Serial.begin(500000); //used only for testing

pinMode(LED1, OUTPUT);
digitalWrite(LED1, HIGH);
pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);
delay(250);
digitalWrite(LED1, LOW);

pinMode(VOICEPIN_A, OUTPUT);
digitalWrite(VOICEPIN_A, LOW);
pinMode(VOICEPIN_B, OUTPUT);
digitalWrite(VOICEPIN_B, LOW);
pinMode(VOICEPIN_C, OUTPUT);
digitalWrite(VOICEPIN_C, LOW);

pinMode(SWITCH1, INPUT); //Switch inputs have external 10k pulldown resistor
pinMode(SWITCHZ2, INPUT);
pinMode(SWITCH3, INPUT);
pinMode(SWITCH4, INPUT);

// set up speed of ADCs

ADC->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32 | //Divde 48Khz GCLK by 32 for ADC
ADC_CTRLB_RESSEL_12BIT; //Set ADC resolution to 12 bits

while(ADC->STATUS.bit.SYNCBUSY); // Wait for these changes to sync

//Sampling Time Length SAMPLEN (normally 63) allows time for ADC capacitor to charge
ADC->SAMPCTRL.reg = ADC_SAMPCTRL_SAMPLEN(1); //Set Sampling Time Length to 1

analogReadResolution(12); //sample manipulations are done at higher resolution
analogWriteResolution(1@); //highest resolution of MKRZero DAC

// start I2S at the sample rate with 16-bits per sample
if (1I2S.begin(I2S_PHILIPS_MODE, sampleRate, 16)) {
Serial.println("Failed to initialize I2S");
while (1); //do nothing if failed
}
3

//
// Main LOOP
//

void loop() {

//
// Creating Transform Curve
//

switch3 = digitalRead(SWITCH3);

73

if (switch3 && !countdown){ //Start countdown and countrecord sequence
countdown = 1;
t = 0;
tcase = 1;
digitalWrite(LED1, HIGH);
}

switch (tcase) { //countdown and countrecord states

case 1: //countl led on
if(t > blink3[0]){
//Serial.print(tcase); Serial.print("\t"); Serial.println(t);
digitalWrite(LED1, LOW);
tcase = 2;
}
break;
case 2: //countl led off
if(t > blink3[1]){
//Serial.print(tcase); Serial.print("\t"); Serial.println(t);
digitalWrite(LED1, HIGH);
tcase = 3;
}
break;
case 3: //count2 led on
if(t > blink3[2]){
//Serial.print(tcase); Serial.print("\t"); Serial.println(t);
digitalWrite(LED1, LOW);
tcase = 4;
}
break;
case 4: //count2 led off
if(t > blink3[3]){
//Serial.print(tcase); Serial.print("\t"); Serial.println(t);
digitalWrite(LED1, HIGH);

tcase = 5;
1
break;
case 5: //count3 led on

if(t > blink3[4]){
//Serial.print(tcase); Serial.print("\t"); Serial.println(t);
digitalWrite(LED1, LOW);
tcase = 6;

}

break;

case 6: //finish

if(t > blink3[5]){ //at end of countdown or countrecord, finish up

//Serial.print(tcase); Serial.print("\t"); Serial.println(t);

if (countdown){ //end the countdown and start the record
countdown = 0;
countrecord = 1;
digitalWrite(LED1, HIGH);
digitalWrite(LED2, HIGH);
t = 0;
tcase = 1;

}

else if (countrecord){ //end the record
countrecord = 0;
countdown = 0;
digitalWrite(LED2, LOW);
digitalWrite(LED1, LOW);
tcase = 7;

74

3
break;
case 7: //do nothing till another start countdown
break;
default:
break;
} //End of case

ifCcountrecord){ //load Transfer function from Slider3 over a count of 3 led blips
slider3 = analogRead(SLIDER3) ;
tfunction[t] = slider3 >> 1 ;

}

if(countrecord || countdown) { //increment index in tfunction[] and wait about a second
++t;
delayMicroseconds(TDELAY);

}

switchl = digitalRead(SWITCH1); //use Serial Plotter to see transfer function in tfunction
if(switchl){
for (int 1 = 0; 1 <= 2047; i++) {
Serial.println(tfunction[i]);
Serial.println("Min:@, Max:2047");

delay(1);
3
} //End Switchl
//
// Sampling Transform
//

samplex = analogRead(Al) - 2048;
sample = samplex; //keep samplex as the original input signal

//for positive samples
if (sample >= @) { sample = tfunction[sample]; 3} //apply transfer function

//for negative samples

else {
sample = -sample;
sample = tfunction[sample]; //apply transfer function
sample = -sample;

3

pan = analogRead(SLIDER1) ;
pan = pan / 4@95; //pan is a float between @ and 1

sample = (pan * sample) + ((1 - pan) * samplex); //pan between input and distorted version
// Connect a sinewave to the Al input and use the Serial Plotter to see the output waveform
switch2 = digitalRead(SWITCH2);
if (switch2){ Serial.println(sample); }
sample = sample << 4; //12-bit to 16-bit size
I2S.write(sample); // write twice for left and right outputs

I2S.write(sample);

} //End of loop

75

Closing Thoughts

The Arduino MKR Zero is a big improvement in processing power over the original
Arduino Uno. The clock speed is increased from 16MHz to 48MHz, Program Memory
goes from 32kB to 256kB, Data Memory goes from 2kB to 32kB, and the Uno's
ATmega328P 8-bit processor is replaced with a SAMD21 Cortex-M0+ 32-bit processor
in the MKR Zero. Any audio processing code could make good use of this extra
processing power.

The MKR Zero's main claim to fame in the audio realm is its ability to play back audio
files from an included SD card through its new 10-bit DAC. An example sketch of this
can be found at https://www.arduino.cc/en/Tutorial/Simple AudioPlayerZero. For this
sketch they describe building an 8-bit mono wav audio test file. That could probably be
improved upon with a 10-bit file instead.

In a world where 16-bit stereo audio DACs are standard, a 10-bit DAC will not sound
very high fidelity. To improve upon the sound output, the 10-bit internal DAC could be
replaced with a better external DAC that uses the MKR Zero's 12S interface and the
Arduino AudioSound library (https://www.arduino.cc/en/Reference/ArduinoSound).

One example sketch from the Arduino AudioSound library is "WavePlayback" which
plays back a signed 16 bit stereo wav file at 44100Hz stored on an SD card. That sketch
claims to use a MAX0835712S Amp Breakout board with an improved DAC and
speaker amp. The same sketch should work with this project's Adafruit UDA3114
breakout board.

At 12-bits the ADCs on the MKR Zero are also under-whelming for audio applications.
In addition, the internal ADC registers must be hacked to bring the conversion speed
anywhere close to useful audio conversion rates. ADC breakout boards with an 12S
interface do not seem to be as available as the DAC breakout boards.

Though the processor improvements gained with the Arduino MKR Zero don't quite

76

come up to the specs necessary for high fidelity audio processing, they at least make it
possible, for the first time, to experiment with audio processing code as demonstrated in
this paper.

The Next Step

As technology rolls onward there are already signal processing platform alternatives to
the Arduino MKR Zero.

If you need more speed and storage space consider using the ESP32 board. It has 520kB
of Program Memory, 520kB of Data Memory, and runs at a speedy 80 to 240MHz. Sadly
there are no improvements to the internal ADCs and DACs. The two internal DACs are
only 8-bit, but the board has two 125 interfaces to use for better, external DAC/ADC
boards.

The ESP32-A1S is a new chip version by Al-Thinker which includes an integrated
AC101 Codec with stereo 24 bit ADCs and DACs running at fast sample rates and
controlled through an 128 interface.

The Chinese company SEEED sells the ESP32-Audio-Kit, a small board that
incorporates the ESP32-A1S. They have also sold other ESP32 audio boards such as the
TTGO-TAudio and the LilyGO. These boards are not as user friendly as the Arduinos
and the software libraries tend to be exclusively oriented towards voice recognition
"SIRI" type applications or SD card playback.

The company Espressif.com makes audio development boards. Its ESP32-LyraT uses
the ESP32-WROVER-B along with an ES8388 audio codec chip by Everest
Semiconductor.

Audio Codec chips that include both ADC and DAC with 128 interfaces seem to be the
way to go. The AC101 by Al-Thinker is one. The AK4556 by Asahi Kasei
Microdevices is another. I've yet to see an external codec breakout board with user
friendly software libraries for anything except the Raspberry Pi.

Several small companies have sprung up providing complete audio signal processing
solutions with both processor hardware and huge extensive libraries:

a4

Electro-Smith.com DAISY uses the AD4556 codec

Bela.io BELA uses the BeagleBones Black Micro
Blokas.i0 PiSound uses the Raspberry Pi
Deeptronic.com BlackStomp uses the ESP32-A1S

78

