

3-Octave
Keyboard

3-Octave Music

Keyboard
John Talbert, Sept. 2017

The Keyboard

This is a 37-note music keyboard with electronic switches.
At this time, the original instrument used with this keyboard
is unknown.

Each key is connected to a flexible spring that is pulled and
slightly stretched across a metal bar when the key is
depressed. The metal bar covers the entire length of the
keyboard but is electrically segmented into 4 separate
“busses” each of which covers one octave or 12 keys. One

of the 4 is a very short and only covers the top “C” key. The
present circuitry actually ignores this one top key and makes
it non-functional.

The keyboard employs two of these key spring-bar circuits. I
have worked out circuit diagrams for each of them. One sets
up simple switches between the key springs and the octave
buss bars. The other adds to this switch setup 12 resistor-
diode circuits, one for each note of the octave.

Duophonic

The keyboard is basically duophonic, able to correctly sense
only two notes at a time. Three or more keys pressed will
result in those notes appearing in all three octaves, not just
the notes being pressed. This happens due to the limitations
of a three bus switch setup.

It is best used as a monophonic keyboard that can
accurately read legato style melodies where two notes might
momentarily sound together in movement from one note to
the next

The Circuit

A programmable micro controller has been installed inside
the keyboard. It now has 3 useful outputs that are
completely programmable. One is a USB serial cable that
can transmit data on the state of the keys for use in
programs like MAX/MSP. Another is a MIDI output that can
transmit MIDI NoteOn and NoteOff commands initiated by
key action. The third output is a phone jack that can output
an audio signal in the form of a square wave.

The Microcontroller is an Arduino Pro Micro, sold by
Sparkfun Electronics. Twelve of its pins have been
configured as inputs to receive high or low voltage signals
from the 12 resistor-diode circuits, one for each note of the
octave. Three other pins have been configured as outputs to
enable or disable each of the 3 octave busses. (The 4th, ‘C’
key buss has not been connected since we ran out of pins
on the micro.)

To read the state of a particular key, you must first bring the
octave buss for that key LOW by sending a HIGH voltage to
the output pin connected to a common emitter transistor
circuit that controls that buss.

The Programs

The Arduino Pro Micro (5v, 16MHz) microprocessor installed
in the keyboard is fully programmable through its USB
connection. I have written 3 programs that make use of
each of the keyboard outputs – the serial USB line, the audio
phone plug output, and the MIDI output.

In the basic program, all 36 keys are scanned, one octave at
a time, and their on/off states are stored in an array. A
second array stores the last scanned key states. Comparing
the two array values reveals which keys have changed,
having been pressed or released, at which point some action
can be performed on an output.

All switches have “bounce” problems where the key state is
unstable for several milliseconds due to the switch making
and losing contact, or bouncing, when changing state. The
usual way to deal with this in software is to delay any action
when a state change is first detected. The initial change is
noted in another array, but no action is taken until after a
second scan confirms that the state change is still in effect.

Key bounce can be seen from the Arduino serial monitor as
multiple changes happening on a single key press or release,
instead of just one. A millisecond delay command in the
program loop can be adjusted high enough that those
multiple changes on a single key change disappear. It also

helps to occasionally clean off carbon deposits on the buss
bars.

Serial Program

One program was written to output serial data over the USB
cable. The data is in the form of key-number/key-state pairs.
The key state equals 0 for pressed keys and 1 for released
keys. The key-number is separated from the key-state with
a space character, and the pairs are separated by carriage
returns. The serial data can be read by the serial object in a
program such as Max/MSP to affect sounds or videos or
other interactions all programmed within the Max/MSP
program.

MIDI Program

A second program was written to output MIDI NoteOns and
MIDI NoteOffs (actually MIDI NoteOn with a velocity = 0).
Note that the Arduino serial commands must use the
Serial1() and not Serial() commands in order to work with the
Pro Micro. This program enables polyphonic performance of
any synthesizer with MIDI input.

This program sets up a straightforward, obvious use of the
keyboard as a traditional music performance device.
However, the MIDI out on the keyboard is not limited to just
NoteOn and Off commands or even single note playback per

key. Any MIDI command can be used in the Arduino
programming or any combination or timing of notes can be
programmed, all triggered by key action in any way you like.
Programmers are encouraged to go wild and create a unique
MIDI performance device using this program as merely a
starting point in your programming explorations.

PulseWave Audio Output

A third program uses the Arduino tone() command to create
a monophonic music keyboard with a squarewave output on
the phone jack. The output originates from a single pin on
the Arduino (A3) oscillating from 0 to 5 volts. An array sets
up values for key frequency, to be fed to the tone() command.
The values in the array can be set for any desired tuning, or
even to improve upon the somewhat off attempt at equal
temperament tuning.

To facilitate more pleasing fast legato playing, the tone is
programmed to change frequency but not abruptly turn off
unless a key scan senses that no key is pressed.

Hardware

The keyboard’s USB cable is standard with a micro USB
connection at the Microprocessor board. A cable tie secures
it at the Arduino input.

Programs can be built and loaded into the keyboard’
microprocessor using an Arduino application provided free
for that purpose. The program loading happens through a
USB connection to any computer running the application.

Any program loaded into the Arduino will remain there and
start up whenever power is applied to the board. Power to
the keyboard can come from another computer through the
USB cable, or you can use any USB power plug or USB
charger to provide the power.

1k1k1k1k1k1k1k1k1k1k1k1k

C1C#1D1D#1E1F1F#1G1G#1A1A#1B1

C2C#2D2D#2E2F2F#2G2G#2A2A#2B2

C3C#3D3D#3E3F3F#3G3G#3A3A#3B3

C4

BUS1

BUS2

BUS3

BUS4

CC#

C

DD#EFF#GG#AA#B

3-OCTAVE KEYBOARD
5 volts

1k1k1k1k1k1k1k1k1k1k1k1k

C1C#1D1D#1E1F1F#1G1G#1A1A#1B1

C2C#2D2D#2E2F2F#2G2G#2A2A#2B2

C3C#3D3D#3E3F3F#3G3G#3A3A#3B3

C4

BUS1

BUS2

BUS3

BUS4

CC#

C

DD#EFF#GG#AA#B

5 volts

3-OCTAVE KEYBOARD
Second Bus

3-OCTAVE KEYBOARD
Arduino Pro Micro

10k

4k7

5v

10k

4k7

5v

10k

4k7

5v

to BUS1

to BUS2

to BUS3

Squarewave
Output

C

C#

D

D#

E

F

F#

G G#

A

A#

B

USB

5v

5 4

2k

** Lone C4 on BUS4 is not connected

To read keys from Octave-X
set BUS-X low

by bringing its A pin high.

Keys read Low when pressed

2N4401

/*
 * 3-Octave Music Keyboard
 * Using Serial
 *
 * Only 12 keys at a time are enabled and readable from 12 digital input pins.
 * Each of the 3 octaves are enabled by writing a High to A0, A1, or A2 pins.
 * Keys read LOW when pressed.
*/
//Array to store Current read key values
byte keys[36] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

//Array to store Last Saved key values
byte keys_saved[36] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

//Array to store tests for those keys that have changed, for key bounce delay.
byte change[36] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

int octave = 0;

//~~

void setup() {

 Serial.begin(57600);

 pinMode(2, INPUT); //12 inputs from an octave of the keyboard
 pinMode(3, INPUT);
 pinMode(4, INPUT);
 pinMode(5, INPUT);
 pinMode(6, INPUT);
 pinMode(7, INPUT);
 pinMode(8, INPUT);
 pinMode(9, INPUT);
 pinMode(10, INPUT);
 pinMode(14, INPUT);
 pinMode(15, INPUT);
 pinMode(16, INPUT);
 pinMode(A0, OUTPUT); //Used to enable each of 3 octaves
 pinMode(A1, OUTPUT);

 pinMode(A2, OUTPUT);
 pinMode(A3, OUTPUT); //Used for audio output

 digitalWrite(A0, LOW); //Disable octaves with a LOW
 digitalWrite(A1, LOW);
 digitalWrite(A2, LOW);

} //end of setup

//~~

void loop() {

// key debounce scheme:
//when a key state change is detected, the change is noted but no action is
//taken until the change is found to be still there on the next scan of keys

 keyRD(); //read all 36 keys and store the key state in keys[]

 for (int i = 0; i < 36; i++){ //check each key for changes

 if (keys[i] != keys_saved[i]){ //if key state has changed

//(keys != saved) & (change is TRUE) =>
//Send Key# and State, Reset Change, Load Saved

 if (change[i]){
 Serial.print(i);
 Serial.print(" ");
 Serial.print(keys[i]);
 Serial.println();
 keys_saved[i] = keys[i];//load key_saved with new state
 change[i] = 0;
 } //end of if change

//(keys != saved) & (change is FALSE) =>
//First time around, Do nothing but mark change=TRUE

 else { change[i] = 1; } //end of else change

 } //end of if keys

//(keys == saved) =>
//no change, or keys bounced away from a change => set change=FALSE

 else { change[i] = 0; } //end of if

 } //end of for

 delay(5); //debouncing delay

} //end of loop

//~~~

void keyRD(){ //Function to read all 36 keys and enter state into keys array

 for (int x = 0; x < 3; x++){

 if (x == 0) {digitalWrite(A0, HIGH); } //Enable one of 3 octaves
 else if (x ==1) {digitalWrite(A1, HIGH); }
 else {digitalWrite(A2, HIGH); }

 octave = x * 12;
 keys[octave + 0] = digitalRead(2);
 keys[octave + 1] = digitalRead(3);
 keys[octave + 2] = digitalRead(4);
 keys[octave + 3] = digitalRead(5);
 keys[octave + 4] = digitalRead(6);
 keys[octave + 5] = digitalRead(7);
 keys[octave + 6] = digitalRead(8);
 keys[octave + 7] = digitalRead(9);
 keys[octave + 8] = digitalRead(10);
 keys[octave + 9] = digitalRead(16);
 keys[octave + 10] = digitalRead(14);
 keys[octave + 11] = digitalRead(15);

 digitalWrite(A0, LOW);
 digitalWrite(A1, LOW);
 digitalWrite(A2, LOW);

 } //end of for

} //end of keyRD() function

/*
 * 3-Octave Music Keyboard
 * Using MIDI
 *
 * Only 12 keys at a time are enabled and readable from 12 digital input pins.
 * Each of the 3 octaves are enabled by writing a High to A0, A1, or A2 pins.
 * Keys read LOW when pressed.
*/
//Array to store Current read key values
byte keys[36] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };

//Array to store Last Saved key values
byte keys_saved[36] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
//Array to store tests for those keys that have changed, for key bounce delay.
byte change[36] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

int octave = 0;
int note = 48; //MIDI note an octave below middle C
int velocity = 0;

//~~

void setup() {

 Serial1.begin(31250); //MIDI Baud Rate

 pinMode(2, INPUT); //12 inputs from an octave of the keyboard
 pinMode(3, INPUT);
 pinMode(4, INPUT);
 pinMode(5, INPUT);
 pinMode(6, INPUT);
 pinMode(7, INPUT);
 pinMode(8, INPUT);
 pinMode(9, INPUT);
 pinMode(10, INPUT);
 pinMode(14, INPUT);
 pinMode(15, INPUT);
 pinMode(16, INPUT);
 pinMode(A0, OUTPUT); //Used to enable each of 3 octaves

 pinMode(A1, OUTPUT);
 pinMode(A2, OUTPUT);
 pinMode(A3, OUTPUT); //Used for audio output

 digitalWrite(A0, LOW); //Disable octaves with a LOW
 digitalWrite(A1, LOW);
 digitalWrite(A2, LOW);

} //end of setup

//~~
~~

void loop() {

// key debounce scheme: when a key state change is detected, the change is noted
but no action
// is taken until the change is found to be still there on the next scan of keys

 keyRD(); //read all 36 keys and store the key state in keys[]

 for (int i = 0; i < 36; i++){ //check each key for changes

 if (keys[i] != keys_saved[i]){ //if key state has changed

//(keys != saved) & (change is TRUE) => Send MIDI noteOn, Reset Change, Load Saved
 if (change[i]){

 note = i + 48;
 if (keys[i] == 0) {velocity=64; }
 else {velocity=0; } //noteOff

 noteOn(0x90, note, velocity);

 keys_saved[i] = keys[i]; //load key_saved with new key state
 change[i] = 0;

 } //end of if change

//(keys != saved) & (change is FALSE) => First time around, Do nothing but mark
change=TRUE
 else { change[i] = 1; } //end of else change

 } //end of if keys

//(keys == saved) => no change, or keys bounced away from a change => set
change=FALSE
 else {change[i] = 0; } //end of if

 } //end of for

 delay(5); //debouncing delay

} //end of loop

//~~
~~~

void keyRD(){       //Function to read all 36 keys and enter state into keys array
  
  for (int x = 0; x < 3; x++){
    
    if (x == 0) {digitalWrite(A0, HIGH); }  //Enable one of 3 octaves
    else if (x == 1) {digitalWrite(A1, HIGH); }
    else {digitalWrite(A2, HIGH); }
    
        octave = x * 12;
        keys[octave + 0] = digitalRead(2);
        keys[octave + 1] = digitalRead(3);
        keys[octave + 2] = digitalRead(4);
        keys[octave + 3] = digitalRead(5);
        keys[octave + 4] = digitalRead(6);
        keys[octave + 5] = digitalRead(7);
        keys[octave + 6] = digitalRead(8);
        keys[octave + 7] = digitalRead(9);
        keys[octave + 8] = digitalRead(10);
        keys[octave + 9] = digitalRead(16);
        keys[octave + 10] = digitalRead(14);
        keys[octave + 11] = digitalRead(15);

        digitalWrite(A0, LOW);
        digitalWrite(A1, LOW);
        digitalWrite(A2, LOW);
        
   } //end of for
}  //end of keyRD() function

//  plays a MIDI note.  Doesn't check to see that
//  cmd is greater than 127, or that data values are  less than 127



//  noteOFF is a noteOn with velocity = 0.

void noteOn(int cmd, int pitch, int velocity) {
  Serial1.write(cmd);
  Serial1.write(pitch);
  Serial1.write(velocity);
}
  

    



/*
 *                     3-Octave Music Keyboard
 *                          Using Tone()
 * 
 * Only 12 keys at a time are enabled and readable from 12 digital input pins.
 * Each of the 3 octaves are enabled by writing a High to A0, A1, or A2 pins.
 * Keys read LOW when pressed.
*/
//Array to store Current read key values
byte keys[36] = {1, 1, 1, 1,  1, 1, 1, 1,  1, 1, 1, 1, 
                 1, 1, 1, 1,  1, 1, 1, 1,  1, 1, 1, 1, 
                 1, 1, 1, 1,  1, 1, 1, 1,  1, 1, 1, 1 };

//Array to store Last Saved key values
byte keys_saved[36] = {1, 1, 1, 1,  1, 1, 1, 1,  1, 1, 1, 1,  
                       1, 1, 1, 1,  1, 1, 1, 1,  1, 1, 1, 1, 
                       1, 1, 1, 1,  1, 1, 1, 1,  1, 1, 1, 1 };  
                            
//Array to store tests for those keys that have changed, for key bounce delay. 
byte change[36] = {0, 0, 0, 0,  0, 0, 0, 0,  0, 0, 0, 0,  
                   0, 0, 0, 0,  0, 0, 0, 0,  0, 0, 0, 0,  
                   0, 0, 0, 0,  0, 0, 0, 0,  0, 0, 0, 0 };    

//Array to store frequency values for the Tone() function 
int note[36] = {131, 139, 147, 156,  165, 175, 185, 196,  208, 220, 233, 247,  
                262, 277, 294, 311,  330, 349, 370, 392,  415, 440, 466, 494,  
                523, 554, 587, 622,  659, 698, 740, 784,  831, 880, 932, 988 
};                       
                              
int octave = 0;
int nokey = 1;

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void setup() {
  
  pinMode(2, INPUT);  //12 inputs from an octave of the keyboard
  pinMode(3, INPUT);
  pinMode(4, INPUT);
  pinMode(5, INPUT);
  pinMode(6, INPUT);
  pinMode(7, INPUT);
  pinMode(8, INPUT);
  pinMode(9, INPUT);
  pinMode(10, INPUT);



  pinMode(14, INPUT);
  pinMode(15, INPUT);
  pinMode(16, INPUT);
  pinMode(A0, OUTPUT);  //Used to enable each of 3 octaves
  pinMode(A1, OUTPUT);
  pinMode(A2, OUTPUT); 
  pinMode(A3, OUTPUT); //Used for audio output

  digitalWrite(A0, LOW);  //Disable octaves with a LOW
  digitalWrite(A1, LOW);
  digitalWrite(A2, LOW);
                 
}  //end of setup

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void loop() {

// key debounce scheme:  when a key state change is detected, 
// the change is noted but no action is
// taken until the change is found to be still there on the next scan of keys

  keyRD();  //read all 36 keys and store the key state in keys[]
  nokey=1;
  
  for (int i = 0; i < 36; i++){  //check each key for changes
    
          if (keys[i] == 0) { nokey=0; } //Note if any keys are pressed.
          
          if (keys[i] != keys_saved[i]){  //if key state has changed

//(keys != saved) & (change is TRUE) => 
//Send a tone() command, Reset Change, Load Saved

                  if (change[i]){ 
                     
                    if (keys[i] == 0) { tone(A3, note[i]); }
                    
                    keys_saved[i] = keys[i]; //load key_saved with new state
                    change[i] = 0;
                    
                  }  //end of if change
                  
//(keys != saved) & (change is FALSE) =>  
//First time around, Do nothing but mark change=TRUE



                  else { change[i] = 1; } //end of else change
  
          }  //end of if keys 

//(keys == saved) => 
//no change, or keys bounced away from a change => set change=FALSE

          else {change[i] = 0; }     //end of if
         
          
  } //end of for
  
  if (nokey==1) { noTone(A3); }  //If no keys were pressed, turn off tone
  delay(5);  //debouncing delay

} //end of loop  

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void keyRD(){ //Function to read all 36 keys and enter state into keys array
  
  for (int x = 0; x < 3; x++){
    
    if (x == 0) {digitalWrite(A0, HIGH); }  //Enable one of 3 octaves
    else if (x == 1) {digitalWrite(A1, HIGH); }
    else {digitalWrite(A2, HIGH); }
    
        octave = x * 12;
        keys[octave + 0] = digitalRead(2);
        keys[octave + 1] = digitalRead(3);
        keys[octave + 2] = digitalRead(4);
        keys[octave + 3] = digitalRead(5);
        keys[octave + 4] = digitalRead(6);
        keys[octave + 5] = digitalRead(7);
        keys[octave + 6] = digitalRead(8);
        keys[octave + 7] = digitalRead(9);
        keys[octave + 8] = digitalRead(10);
        keys[octave + 9] = digitalRead(16);
        keys[octave + 10] = digitalRead(14);
        keys[octave + 11] = digitalRead(15);

        digitalWrite(A0, LOW);
        digitalWrite(A1, LOW);
        digitalWrite(A2, LOW);



        
   } //end of for
}  //end of keyRD() function

    


