
The AY Teletalk

The AY Teletalk box is basically a classic game synthesizer chip, the AY-3-8912, controlled by
an Arduino Uno microprocessor.

AY Synth History

The AY-3-8910 is first of a series of 3-voice programmable sound generator chips designed by
General Instrument at the end of the 1970’s. The series was very successful, becoming the most-
used audio chip of the arcade industry through the early 1980s. They were used on, among
others, the Intellivision and Vectrix video game consoles, Amstrad CPC, Oric 1, Colour Genie,
Elektor TV Games Computer and Sinclair ZX Spectrum computers as well as the Mockingboard
and Cricket sound cards for the Apple II family. By 1987 it was modified, under license, by
Yamaha as the YM2149F; the Atari ST used this version. Texas Instruments followed with its
own version, the SN76489. The chips are no longer made, but a declining stock for servicing
vintage machines is still available as well as on eBay.

AY Synth Basics

The AY chip features 3 square wave tone generators output to three separate chip pins. Each tone
generator may be mixed with a single pseudo random pulse width modulated noise generator, and
the amplitude of each mix can be controlled. A single envelope generator can be applied to any
combination of the tone generators.

AY Synth Programmable Registers

The synthesizer parameters are set by the contents of 14 registers described below. The job of the
Arduino microcomputer is to load these registers with values and at times designated by the
programmer.

Registers 0-5: Each tone generator has an 8-bit Fine Tune register and a 4-bit Coarse Tune
register to set the pitch of its square wave.

Fine Tune A (0-255)
Course Tune A (0-15)
Fine Tune B (0-255)
Course Tune B (0-15)
Fine Tune C (0-255)
Course Tune C (0-15)

Register 6: The single noise generator has a 5-bit Period Control for changing the general
frequency of the colored noise.

Noise Frequency (0-31)

Register 7: This 6-bit register controls the mix; each of the 3 tone generators has one bit to turn
on or off its square wave tone and another bit to turn on or off the noise generator in the mix. Set
the bit to zero to enable that voice. For example, to enable only tones in C, nothing in B, and both
tones and noise in A, load the register with a value equal to (32+16+0 + 0+2+0) or ‘B110010’ in
binary.

| NoiseC (32) | NoiseB (16) | NoiseA (8) || ToneC (4) | ToneB (2) | ToneA (1) |

Registers 8-10: Another 3 registers control the amplitude of the 3 voices. Four bits of each
register controls the logarithmic D/A converter which can set the amplitude of each voice mix.
An extra single bit determines whether the voice amplitude will be controlled by this register’s 4-
bit amplitude control or by the shared Envelope Generator.

A Amplitude (0-15, 16 - Use Envelope)
B Amplitude (0-15, 16 - Use Envelope)
C Amplitude (0-15, 16 - Use Envelope)

Register 11: This 8-bit register is the Fine Tune adjustment for the Envelope Generator’s Period.

Envelope Period - Fine (0-255)

Register 12: This 8-bit register is the Course Tune adjustment for the Envelope Generator’s
Period.

Envelope Period - Course (0-155)

Register 13: This is a 4-bit selection of the Envelope Shape.

Envelope Shape (0-15)

___ 0-3 Ramp Down, Stay Off
/|____ 4-7 Ramp Up, Immediate Off, Stay Off
|\|\ 8 Repeated Backward Sawtooth (Immediate Up, Ramp Down)
__ 9 Same as 0-3
\/\/ 10 Repeated Triangle (Ramp Down, Ramp Up)
\| 11 Ramp Down, Immediate Up, Stay On
/|/| 12 Repeated Sawtooth (Ramp Up, Immediate Down)
/ 13 Ramp Up, Stay On
/\/\ 14 Repeated Triangle (Ramp Up, Ramp Down)
/|__ 15 Same as 4-7

The AY Teletalk Box

The AY Teletalk box outputs the three AY synth chip voices, labeled A, B, and C. There is also a
fourth voice, D, which comes from the digital output pin 6 on the Arduino board (named
TONE_D). This pin outputs a square wave that can be conveniently programmed with the
Arduino “tone” command which comes in two forms: tone(pin, frequency) or tone(pin,
frequency, duration).

Volume controls for each of the four voices are on the back of the box. A voice select switch
with 6 positions is on the front of the box. The switch settings are as follows:

Voice A Only
Voice B Only
Voice C Only
Voice D Only

All 4 Voices In Amplitude Modulation
A+B+C Mixed and Modulated with D

The top of the box has 3 switches (2 pushbuttons and one toggle) and 3 slide pots. These are
connected to Arduino pins A0 – A5. The programmer can use these to affect the 4 synthesizer
voices in any way they want. On the left side of the box is a USB jack used for programming the
Arduino from a computer. It can also be used as a serial pipe for feeding data to the synth from a
program like Cycling 74’s Max/MSP.

Power to AY Teletalk comes from a power jack in the back. Please use a 9v DC power module
with positive center. A regulator on the Arduino board drops the 9volts to 5volts for those circuit
components needing a 5 volt supply. You may also be able to power the box, without its internal
speaker, from the USB cable if it is connected to a powered hub.

The box includes an internal speaker for that tinny, old-time synth sound. For better fidelity use
the front phone jack to connect to a good sound system.

The AY Teletalk box expands on the classic AY chip sounds with a special semi-digital
Amplitude Modulation and an added Arduino voice. To hear the original AY chip sound use the
6th switch setting with the D voice turned down. This setting will simply add the three chip voices
together. Use the volume controls on the back to control the mix of the 3 voices. To add some
spice to the mix turn up the volume on the D voice, which is wired to amplitude modulate the 3
voice chip mix. For a wild crazy sound, turn the switch to the 5th position where all 4 voices are
modulating each other. Play with the volume controls to change which voice or voices are the
dominant modulators.

The Arduino Uno Controller

The AY-3-8912 synthesizer chip is wired to an Arduino Uno microprocessor. With the Arduino,
a programmer can control when and with what data the 14 AY registers are loaded. An Arduino
template program has been written to make this as easy as possible. By starting your program

from this template you need not worry about all the details of addressing and writing to the
registers. Just use the functions provided in your main loop:

ldSynth(register number, register data)

ldFineTuneA(8-bit data)
ldFineTuneB(8-bit data)
ldFineTuneC(8-bit data)

ldCourseTuneA(4-bit data)
ldCourseTuneB(4-bit data)
ldCourseTuneC(4-bit data)

ldNoisePeriod(5-bit data)
ldEnable(ABC 6-bit noise/tone enable)

ldAmpA(5-bit data)
ldAmpB(5-bit data)
ldAmpC(5-bit data)

ldEnvCourseTune(8-bit data)
ldEnvFineTune(8-bit data)
ldEnvShape(4-bit data)

In addition to the 3 chip voices, an Arduino voice has been wired in. Digital Pin #6 has been
assigned to Voice D. In the program template it is given the constant name TONE_D. For most
applications, use the Arduino command “tone” to set the pitch and/or duration, as in
tone(TONE_D, frequency) or tone(TONE_D, frequency, duration).

Three switches and 3 slide pots have been mounted to the top of the AY teletalk box. These are
wired to the Arduino input pins A0 to A5. Pins A0, A1, and A2 have been defined in the template
program as digital inputs and connected to the 3 switches. Pins A3, A4, and A5 have been define
as analog inputs and connected to the 3 slide pots. Six variable have been defined for them and it
is suggested that you use them as follows:

Button0 = digitalRead(A0);
Button1 = digitalRead(A1);
Toggle = digitalRead(A2);
Slider0 = analogRead(A3);
Slider1 = analogRead(A4);
Slider2 = analogRead(A5);

To reset the AY chip to silence load all the registers with zero. The template uses the following
code to do this in “setup”:

for (int x = 0; x < 14; x++){ ldSynth(x, 0); }

Programming the AY Teletalk

With just a little programming, you can turn the AY Teletalk into a unique performance
synthesizer. Most of the detailed work of programming the AY Chip has been done for you in an
AY_Template.ino program for the Arduino Uno. All that you need to add is the Arduino “loop”
program. To get you started here are a couple example loop programs.

This first example illustrates some simple ways to use the sliders and buttons to affect the 4
voices of the AY Teletalk.

void loop() {

//---------------------------Button 0 Sets Arduino Voice D--------------------

 Button0 = digitalRead(A0);

 if (Button0) {
 tone(TONE_D,600, 10);
 }
 else{
 tone(TONE_D, 300);
 }

//-------------------------- Button 1 changes AY 3-voice pitches --------------

 Button1 = digitalRead(A1);
 if (Button1){
 ldFineTuneA(40);
 ldFineTuneB(45);
 ldFineTuneC(34);
 }
 else{
 ldFineTuneA(255);
 ldFineTuneB(55);
 ldFineTuneC(100);
 }

//---------------------------- Slider 1 adjusts the Noise Frequency -------------

 Slider1 = analogRead(A4) >> 5; // shift the 10-bit read result to 5-bits
 ldNoisePeriod(Slider1); //Noise Period to Max

//--------------------------- Toggle Enables Noise or Tones on the AY voices -----------

 Toggle = digitalRead(A2);
 if (Toggle){
 ldEnable(B000111); //Enable only noise (low enable)
 }
 else {
 ldEnable(B111000); //Enable only tones (low enable)
 }

//-------------------------- Slider 2 controls the Envelope on the 3 AY voices ---------

 ldAmpA(B10000); // Amplitude controlled by Envelope
 ldAmpB(B10000);
 ldAmpC(B10000);

 Slider2 = analogRead(A5) >> 6;
 ldEnvCourseTune(Slider2); //env period

 ldEnvShape(12); //Decay with one cycle only

//-------------------------- Slider 0 controls the tempo ---------

 Slider0 = analogRead(A3) ;
 delay(50 + Slider0);

} //End of loop

//***

//***

//***

This second example uses the Arduino random number generator to create random pitches with
the center and spread of the random pitches controlled by sliders. Each AY voice uses exactly the
same routine but the random generator creates different results.

Instead of using the AY chip’s Envelope generator as in the previous example, amplitude ramps
are created in the program and loaded directly into the AY Amplitude control registers.

Having just three slider pots may be rather limiting in some cases. Here, one of the buttons is
used to give a slider two different functions depending on whether the button is depressed or
released.

void loop() {

// -----------Voice D from Arduino D6 ------------------

Slider0 = analogRead(A3); //frequency of Arduino Tone D6
 if (digitalRead(A0)) { // sharing Slider0 to set parameters by using Switch0
 dur = Slider0 >> 3; //set envelope durations
 }
 else{
 tone(TONE_D, Slider0); // set frequencey of Voice D

 }

// -----------Toggle Switch turns on noise in one voice ------------------

 Toggle = digitalRead(A2);
 if (Toggle){
 ldEnable(B110000); //Enable noise and tones in one voice (low enable)
 }
 else {
 ldEnable(B111000); //Enable only tones (low enable)
 }

// ------------Voice A from AY Chip---------------------

if (envA != 0){ //ramping down voice A envelope, 15 to 0

 if (durA_count != 0){ //wait for a count of durA
 durA_count -= 1;
 }
 else { // when the count reaches zero decrement voice A envelope, reset count
 durA_count = durA;
 envA -= 1;
 ldAmpA(envA);
 }
 }
 else{ // when envelope reaches zero, reset voice A with new frequency and envelope

 freq = getFreq(); //get new random pitch for voice A

 ldFineTuneA(freq & B11111111); //use lower 8 bits for fine tune
 ldCourseTuneA(freq >>8); //use higher bits for course tune

 durA = random(1, dur) ; // get random 8 bit duration for envelope A

 durA_count = durA;
 envA = 15;
 ldAmpA(envA); //set voice A full on
 }

 // ------------Voice B from AY Chip---------------------

if (envB != 0){ //ramping down voice B envelope, 15 to 0

 if (durB_count != 0){ //wait for a count of durB
 durB_count -= 1;
 }
 else { // when the count reaches zero decrement voice B envelope, reset count
 durB_count = durB;
 envB -= 1;
 ldAmpB(envB);
 }
 }
 else{ // when envelope reaches zero, reset voice B with new frequency and envelope

 freq = getFreq(); //get new random pitch for voice B
 ldFineTuneB(freq & B11111111);
 ldCourseTuneB(freq >>8);

 durB = random(1, dur) ; // get random 8 bit duration for envelope B

 durB_count = durB;
 envB = 15;
 ldAmpB(envB); //set voice B full on
 }

// ------------Voice C from AY Chip---------------------

if (envC != 0){ //ramping down voice C envelope, 15 to 0

 if (durC_count != 0){ //wait for a count of durC
 durC_count -= 1;
 }

 else { // when the count reaches zero decrement voice C envelope, reset count
 durC_count = durC;
 envC -= 1;
 ldAmpC(envC);
 }
 }
 else{ // when envelope reaches zero, reset voice C with new frequency and envelope

 freq = getFreq(); //get new random pitch for voice C
 ldFineTuneC(freq & B11111111);
 ldCourseTuneC(freq >>8);

 durC = random(1, dur) ; // get random 8 bit duration for envelope C

 durC_count = durC;
 envC = 15;
 ldAmpC(envC); //set voice C full on
 }

 // ------------Switch 1 Slows everything to almost a standstill---------------------
 Button1 = digitalRead(A1);
 if (Button1 == 0){
 delay(250);
 }
} // End of Loop

int getFreq() { // getting random frequency for Voices
 Slider2 = analogRead(A5) >> 2; //base frequencey
 Slider1 = analogRead(A4) ; // range of frequencies around the base
 int basefreq = Slider2 + 10;
 int result = basefreq + random(Slider1);
 return result;

}

//***

//***

//***

AY Data Streaming

The programming examples above are just two out of an unlimited number of possibilities for
turning the AY Teletalk into a uniquely sounding performance device. However, this is not how
the chip was traditionally used in the game machines of the 70s and 80s. In these machines, all 14
AY chip registers are continually updated every 20 milliseconds, whether the values change or
not, from a large playback “song” file.

Because of this constant updating, voice envelopes are created by the data stream using the 4-bit
Amplitude Control registers. Rarely is the chip’s single Envelope Generator used. Because of
this, the 14th register is most often given the value “FF” or 255, denoting that the Envelope
Generator is not being used and this Envelope Shape register need not be loaded.

The .YM File Format

These “music” or “song” files are simply dumps of an AY chip frame every 20 milliseconds
(50Hz). Each frame consists of 14 (sometimes 16) 8-bit “bytes” of data - a full update of all the
data parameters of the AY synth. If you had a 5-minute song in which all 14 register are updated
every 20ms, you would need a file of 210,000 bytes. These AY frame dump files were
standardized into the YM file format created for ST-Sound by Arnaud Carre. The file format is
freeware, so everybody can use, read, or produce YM files that will work for the AY chip
synthesizer and all its relatives (http://leonard.oxg.free.fr http://ym2149.org/resources/YM-File-
format.html). The YM file format adds useful information such as the length, song title,
comments, and composer to the file. It also interleaves the data so that data for each register is
gathered together in sequence. Since much of a register’s data doesn’t change from one frame to
the next, this format allows for easy file compacting to a much smaller filesize.

A large body of YM files used in the old Atari, Amstrad, and Spectrum computers are still
available on the Web:

http://www.cpcmuseum.com/
http://www.genesis8bit.fr/frontend/music.php
http://chipmusic.org/
ftp://ftp.modland.com/pub/modules/YM/

Even if you don’t have a vintage computer with a sound chip, you can still listen to these YM
files using a sound chip simulator program such as AudioOverload2 for the Mac by Richard
Bannister (http://www.bannister.org/software/ao.htm).

Streaming YM files to the AY Teletalk

These same YM files can be played back on the AY sound chip in the Teletalk box. First of all,
the YM file must be de-compressed using an LHA/LZH extractor. The Mac Unix system has
one. Find the location of the lha command and, in the Terminal app, run lha -x myfile.ym

Next, the register data must be de-interlaced into consecutive frames of data bytes for the 14 AY
chip registers. A C-program to do that has been created by Daniel Tufvesson (
http://www.waveguide.se/?article=32&file=ymextract.c). He has also kindly provided 7 ready
made de-interlaced YM.reg register files from the Modland archive – Cybernoid, Cybernoid II,
Stormlord, Delta, Warhawk, Sidewinder, and Outrun (http://www.waveguide.se/?article=ym-
playback-on-the-ymz284).

The Arduino Uno has limited memory space that is not large enough to hold an entire YM file.
One solution would be to incorporate an Arduino shield with an SD card interface to hold the file.
However, here I’ve chosen to create a Cycling ’74 Max patch to feed the Arduino Uno the register
frames from a desktop computer file through a USB serial line.

The Arduino part of this setup, YMLoadFromMax.ino, is very simple. It reads the data coming
from Max over the serial line, while keeping track of the register number, and loads it into the
chip. A reset button is created in case the data stream gets out of sequence. Also, the Arduino
voice_D frequency set is put on a slider; though a more interesting possibility may be to derive it
from one of the chip voice’s CourseTune values.

y = 0;

void loop() {

 // ~~~~~~~~Add tone D for Modulation~~~~~~~~~~~~~~~~~~~~

 tone(TONE_D, (analogRead(A3) + 100));

 // ~~~~~~~~~~~~~If A0 button is pushed, RESET the synth ~~~~~~~~

 if (! digitalRead(A0)) {
 while((Serial.available())) { val = Serial.read(); } //empty Serial buffer
 for (int x = 0; x < 14; x++){ ldSynth(x, 0);} //reset the AY chip
 y=0;
 } // end Reset IF

 //~~~~~~~~~~If serial data is available, Load it into an AY register ~~~~~~

 if (Serial.available()) {

 if (y==13) { // last YM synth register, load if not FF, reset register count to 0
 val = Serial.read();
 if (val != 0xFF) { ldSynth(y, val); }
 y=0;

 } else {
 ldSynth(y, Serial.read()); //fill AY register y with serial data
 y += 1;

 } //End of else

 } //End of if Serial.available

} // End of MAIN LOOP

// ~~~

The Max Patch YMfeed.maxpat is shown below. The first step in using the patch is to load a de-
interlaced YM file. The actual patch uses a “filein” object to fill a “coll” object.

The “Reset” button erases any previous YM file in the patch. The “Select YM File” button brings
up a dialog box for you to choose a YM File. Finally, the “Load File &Wait” button starts the
upload. While uploading, a counter below this button will increment and eventually stop at the
total number of frames uploaded in the file.

To play the File on the AY Teletalk box, first select the serial port to which the Arduino Uno is
connected. It will be one of the non-Bluetooth ports. Set the Playback speed at the usual speed of
20ms, though you have the option of playback up to twice the speed (10ms) or down to super
slow. Speed values can be entered either from the slider or by entering a millisecond value in
the number box. Finally, hit the “Play” button for playback at the speed you chose; the button
includes a frame counter. There is also a button for stepping through the frames one at a time

after the “Play” button has been stopped. The Synth will hold the last note after a stop, which you
can turn off by hitting the “Silence” button. The “Jump Back” button has a number box for
entering any frame you might want to jump to on hitting this button.

1 Output C

2 Test

3 Vcc (+5V)

4 Output B

5 Output A

6 Vss (GND)

7

8

9

10

11

12

13

14

DA0 28

DA1 27

DA2 26

DA3 25

DA4 24

DA5 23
DA6 22

DA7 21

BC1 20

BC2 19

BDIR 18

A8 17

RESET 16

Clock 15

IO A7-A0

AY
-3

-8
91

2

D8

D9

D10

D11

D12

D5

D2

D3

D13

D7

D4

Arduino Reset

1

78

14

2 Mhz
Xtal

P
O
R
T
B

D6 - Tone D

D0,D1 - Serial I/O

+5V

+5V

+5V

A3

A4

A5

A0

A1

A2

Switches use internal pullups

pinMode(A0, INPUT);
digitalWrite(A0, HIGH);

Arduino Inputs A0-A5 Arduino Digital Pins D0-D13
AY Teletalk 1/2

John Talbert April 2016

A

B

C

DDRB = B0011 1111;

PORTB =

Slider0 = analogRead(A3);

Button0 = digitalRead(A0);

BDIR BC2 BC1
 0 0 0 Inactive
 1 0 0 Latch Address

 0 1 0 Inactive
 1 1 0 Write Data

-
+

-
+

-
+

A

B

C

D

A

B

C

D

D

A

B

C

A x B x C x D

(A+B+C) x D

5k
log

5k
log

5k
log

5k
log

100k

100k

100k

100k

100k

100k

4k7

30k

100k

0.1uF

4k7

470k

0.08uF

1k

1k

47k 47k

10uF+

+

+15k
trim

10Ω
.05uF

200uF

220uF

1

2
3

14

12
13

11
9

10

8
6

7

5
4

3

5

6
7

2

3 4

8
1

2

3

6

4

5

9v
LM386

Intersil
CA3046

1/2
LM358

1/2
LM358

Intersil
CA3046

AY Teletalk Circuit 2/2
John Talbert April 2016

1

CA-3046

General Purpose NPN Transistor Array

The CA3046 consists of five general purpose silicon NPN
transistors on a common monolithic substrate. Two of the
transistors are internally connected to form a differentially
connected pair.

The transistors of the CA3046 are well suited to a wide
variety of applications in low power systems in the DC
through VHF range. They may be used as discrete
transistors in conventional circuits. However, in addition,
they provide the very significant inherent integrated circuit
advantages of close electrical and thermal matching.

Pinout
CA3046 (PDIP, SOIC)

TOP VIEW

Features
• Two Matched Transistors

- VBE Match . r5mV
- IIO Match. .2PA (Max)

• Low Noise Figure 3.2dB (Typ) at 1kHz

• 5 General Purpose Monolithic Transistors

• Operation From DC to 120MHz

• Wide Operating Current Range

• Full Military Temperature Range

Applications
• Three Isolated Transistors and One Differentially

Connected Transistor Pair for Low Power Applications at
Frequencies from DC Through the VHF Range

• Custom Designed Differential Amplifiers

• Temperature Compensated Amplifiers

• See Application Note, AN5296 “Application of the CA3018
Integrated-Circuit Transistor Array” for Suggested
Applications

Ordering Information
PART NUMBER

(BRAND)
TEMP.

RANGE (oC) PACKAGE
PKG.
NO.

CA3046 -55 to 125 14 Ld PDIP E14.3

CA3046M
(3046)

-55 to 125 14 Ld SOIC M14.15

CA3046M96
(3046)

-55 to 125 14 Ld SOIC Tape
and Reel

M14.15

SUBSTRATE

1

2

3

4

5

6

7

14

13

12

11

10

9

8

DIFFERENTIAL
PAIR

Q1
Q5

Q4

Q3

Q2

Data Sheet December 15, 2011 File Number 341.6

OBSOLETE PRODUCT

RECOMMENDED REPLACEMENT PART

HFA3046

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a trademark of Intersil Americas LLC

Copyright Intersil Americas LLC 2001, 2011. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.

http://www.intersil.com?utm_source=intersil&utm_medium=datasheet&utm_campaign=logo-ds-header

2

Absolute Maximum Ratings Thermal Information
Collector-to-Emitter Voltage (VCEO) . 15V
Collector-to-Base Voltage (VCBO) . 20V
Collector-to-Substrate Voltage (VCIO, Note 1). 20V
Emitter-to-Base Voltage (VEBO) . 5V
Collector Current (IC) . 50mA

Operating Conditions
Temperature Range. -55oC to 125oC

Thermal Resistance (Typical, Note 2) TJA (oC/W) TJC (oC/W)
PDIP Package 180 N/A
SOIC Package 220 N/A

Maximum Power Dissipation (Any One Transistor) 300mW
Maximum Junction Temperature (Plastic Package)150oC
Maximum Storage Temperature Range -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) 300oC

(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. The collector of each transistor of the CA3046 is isolated from the substrate by an integral diode. The substrate (Terminal 13) must be connected
to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.

2. TJA is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications TA = 25oC, characteristics apply for each transistor in CA3046 as specified

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
DC CHARACTERISTICS
Collector-to-Base Breakdown Voltage V(BR)CBO IC = 10PA, IE = 0 20 60 - V

Collector-to-Emitter Breakdown Voltage V(BR)CEO IC = 1mA, IB = 0 15 24 - V

Collector-to-Substrate Breakdown Voltage V(BR)CIO IC = 10PA, ICI = 0 20 60 - V

Emitter-to-Base Breakdown Voltage V(BR)EBO IE = 10PA, IC = 0 5 7 - V

Collector Cutoff Current (Figure 1) ICBO VCB = 10V, IE = 0 - 0.002 40 nA

Collector Cutoff Current (Figure 2) ICEO VCE = 10V, IB = 0 - See Fig. 2 0.5 PA

Forward Current Transfer Ratio (Static Beta)
(Note 3) (Figure 3)

hFE VCE = 3V IC = 10mA - 100 - -

IC = 1mA 40 100 - -

IC = 10PA - 54 - -

Input Offset Current for Matched Pair Q1 and Q2.
|IIO1 - IIO2| (Note 3) (Figure 4)

VCE = 3V, IC = 1mA - 0.3 2 PA

Base-to-Emitter Voltage (Note 3) (Figure 5) VBE VCE = 3V IE = 1mA - 0.715 - V

IE = 10mA - 0.800 - V

Magnitude of Input Offet Voltage for Differential
Pair |VBE1 - VBE2| (Note 3) (Figures 5, 7)

VCE = 3V, IC = 1mA - 0.45 5 mV

Magnitude of Input Offset Voltage for Isolated
Transistors |VBE3 - VBE4|, |VBE4 - VBE5|,
|VBE5 - VBE3| (Note 3) (Figures 5, 7)

VCE = 3V, IC = 1mA - 0.45 5 mV

Temperature Coefficient of Base-to-Emitter
Voltage (Figure 6)

VCE = 3V, IC = 1mA - -1.9 - mV/oC

Collector-to-Emitter Saturation Voltage VCES IB = 1mA, IC = 10mA - 0.23 - V

Temperature Coefficient: Magnitude of Input Off-
set Voltage (Figure 7)

VCE = 3V, IC = 1mA - 1.1 - PV/oC

DYNAMIC CHARACTERISTICS
Low Frequency Noise Figure (Figure 9) NF f = 1kHz, VCE = 3V, IC = 100PA,

Source Resistance = 1k:
- 3.25 - dB

Low Frequency, Small Signal Equivalent
Circuit Characteristics

Forward Current Transfer Ratio (Figure 11) hFE f = 1kHz, VCE = 3V, IC = 1mA - 110 - -

Short Circuit Input Impedance (Figure 11) hIE f = 1kHz, VCE = 3V, IC = 1mA - 3.5 - k:

Open Circuit Output Impedance (Figure 11) hOE f = 1kHz, VCE = 3V, IC = 1mA - 15.6 - PS

'VBE
'T

'VIO
'T

CA-3046

http://www.intersil.com?utm_source=intersil&utm_medium=datasheet&utm_campaign=logo-ds-footer

©2010 Fairchild Semiconductor Corporation

www.fairchildsemi.com

Rev. 1.0.3

Features
• Internally Frequency Compensated for Unity Gain
• Large DC Voltage Gain: 100dB
• Wide Power Supply Range:

LM258/LM258A, LM358/LM358A: 3V~32V (or ±1.5V
~ 16V)
LM2904 : 3V~26V (or ±1.5V ~ 13V)

• Input Common Mode Voltage Range Includes Ground
• Large Output Voltage Swing: 0V DC to Vcc -1.5V DC
• Power Drain Suitable for Battery Operation.

Description
The LM2904,LM358/LM358A, LM258/LM258A consist of
two independent, high gain, internally frequency
compensated operational amplifiers which were designed
specifically to operate from a single power supply over a
wide range of voltage. Operation from split power supplies
is also possible and the low power supply current drain is
independent of the magnitude of the power supply voltage.
Application areas include transducer amplifier, DC gain
blocks and all the conventional OP-AMP circuits which now
can be easily implemented in single power supply systems.

8-DIP

8-SOP

1

1

Internal Block Diagram

-
+

+

-

1

2

3

4 5

6

7

8 VCC

OUT2

IN2 (-)

IN2 (+)

OUT1

IN1 (-)

IN1 (+)

GND

LM2904,LM358/LM358A,LM258/
LM258A
Dual Operational Amplifier

LM2904,LM358/LM358A,LM258/LM258A

4

Electrical Characteristics (Continued)

(VCC= 5.0V, VEE = GND, unless otherwise specified)
The following specification apply over the range of -25°C ≤ TA ≤ +85°C for the LM258; and the 0°C ≤ TA ≤ +70°C
for the LM358; and the -40°C ≤ TA ≤ +85°C for the LM2904

Parameter Symbol Conditions
LM258 LM358 LM2904

Unit
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.

Input Offset
Voltage VIO

VCM = 0V to
VCC -1.5V
VO(P) = 1.4V,
RS = 0Ω

- - 7.0 - - 9.0 - - 10.0 mV

Input Offset
Voltage Drift ΔVIO/ΔT RS = 0Ω - 7.0 - - 7.0 - - 7.0 - μV/°C

Input Offset
Current

IIO - - - 100 - - 150 - 45 200 nA

Input Offset
Current Drift ΔIIO/ΔT - - 10 - - 10 - - 10 - pA/°C

Input Bias
Current IBIAS - - 40 300 - 40 500 - 40 500 nA

Input Voltage
Range VI(R)

VCC = 30V
(LM2904 , VCC = 26V) 0 - VCC

-2.0 0 - VCC
-2.0 0 - VCC

-2.0 V

Large Signal
Voltage Gain GV

VCC = 15V,
RL =2.0kΩ
VO(P) = 1V to 11V

25 - - 15 - - 15 - - V/mV

Output Voltage
Swing

VO(H)

VCC=30V
(VCC =
26V for
LM2904)

RL = 2kΩ 26 - - 26 - - 22 - - V

RL=10kΩ 27 28 - 27 28 - 23 24 - V

VO(L) VCC = 5V, RL=10kΩ - 5 20 - 5 20 - 5 20 mV

Output Current

ISOURCE

VI(+) = 1V,
VI(-) = 0V,
VCC = 15V,
VO(P) = 2V

10 30 - 10 30 - 10 30 - mA

ISINK

VI(+) = 0V,
VI(-) = 1V,
VCC = 15V,
VO(P) = 2V

5 8 - 5 9 - 5 9 - mA

Differential
Input Voltage VI(DIFF) - - - VCC - - VCC - - VCC V

