
Arduino Polyphonic  
Synthesizer

with OR Gate Distortion, Fuzz Circuit, and MIDI record

John Talbert - April 2019



2

Table of Contents

    The Synth   3
    Voice Frequency 4
    Simple Mixer/Gate 6
    Enhanced Gate  8
    Enhanced Mixer 12
    Fuzz Distortion 13
    Arduino Pro Micro 17
    The Box  19

    Synth Test Program 22
    Modulated Voices Program 27
    Random Note Program 31
    MIDI Synth Program 36
    MIDI Record & Playback 46
   



3

This is a multi-voice programmable synthesizer built with the 
Arduino Pro Micro. Four voices come from Arduino output pins 
programmed to produce square waves and pulse waves. 

One of these pins is used to subject an external audio input to unique 
distortions. 

All the voices are combined with mixer and modulation circuitry 
creating a wide variety of crazy timbres. 

USB MIDI Control over the Synthesizer can be set up using the 
USBMIDI.h Library. 

Supplies: 

Arduino Pro Micro from Sparkfun Electronics (5volt version).  
Gutted Mix800 Mixer box from Ebay, has most of the needed pots and switches.  
Two LM358 op amp chips  
One Intersil CA3046 NPN transistor chip.  
Sockets for the Pro Micro and the three chips.  
Circuit board.  
Two 5k or 10k pots. 
Two 100k or 50k pots. 
Two red LEDs.  
Two pushbutton switches.  
Misc. resistors and capacitors.  
USB cable for the Arduino.  
Optional 9 volt power wart. 

The Synth



4

Voice Frequency
Building a multi-voice synthesizer with the Arduino should be fairly easy given all its 

digital output pins that are capable of producing square wave and pulse wave audio signals.  
It even has a tone() function that can easily create a square wave signal at a specified 
frequency.

tone( pin#, frequency-in-hertz)

However, the tone function can only be used on a single output pin.  Getting more than one 
voice will require some finagling.  It can be accomplished by periodically toggling output 
pins at specific times.  To toggle an output pin, you first read its present state and then write 
in the opposite state as follows :

digitalWrite(voice-pin#, !digitalRead(voice-pin#))

The exclamation point denotes a logical “not” operation, reading the pin state as its opposite 
state.

Toggling the pin state at equal time periods result in a specific frequency.   To get this 
periodic  change, first note that the Arduino loop() function will repeat at a fairly constant 
rate, and this rate will hopefully be pretty fast if the total loop program is short enough. 

With an Arduino Uno clock rate of 16MHz, my program loop time turned out to be 44 
useconds (44 millionth of a second, or a rate of about 22.7KHz).  In order to produce a 
squarewave at the frequency of 440Hz (key of A) I would have to toggle the pin output every 
26 times through the loop.  This is easily done in the code by just decrementing a counter, 
initially set to 26, each time through the loop.  When it reaches zero, toggle the voice pin and 
reset the counter to 26.  The equation for calculating this counter value for different 
frequencies is given here.

loop-frequency/(2*frequency-desired)



5

The actual counter value for A-440 using the above equation is 25.83, which 
was rounded up to 26 for our program.  This means that the equal-temperament 
tuning for A-440 will be slightly off.  The higher the frequency, the smaller the 
counter value and the more “off” the tuning will be.  For lower frequencies the 
counter values will be larger resulting in smaller overall errors when rounding off.  
So, in effect, the tuning for the lower notes will be spot-on, while the upper register 
tunings will get progressively worse.

Here are the program lines for the voice counter:

 // decrement Voice freq counter

--freq;                              

//toggle Voice pin when counter reaches zero

if (freq <= 0)  {
            digitalWrite(Voice_pin#, !digitalRead(Voice_pin#) ); 

 
 //reload counter from a table or a slider value  

      
 freq = voiceCounter;  }

This routine can be copied with other output pins and their respective counter values 
to create an Arduino Synth with any degree of polyphony, or number of voices.   



6

 Simple Mixer/Gate
The Arduino voice outputs can be added together with a simple resistor mixer 

to produce a single output. Each pin output is connected to an equal value resistor. 
The other sides of the resistors are then connected together to form a single output. 
The output is then a simple mixed sum of all the voices. One disadvantage with this 
circuit is that you do lose volume as more voices are added. Three voices will have 
1/3 their initial volume, four will have 1/4 the initial volume, and so on. 

The sound of squarewaves can get tedious. A diode OR gate circuit is an easy 
way to add variety in the form of voice modulation. The output of the diode OR gate 
is basically a pulse waveform that gets more raucous as you add more voices. The 
gate works by dropping the output low only when all the inputs happen to be low. 
This is illustrated in the waveform diagram below. VoiceD in the diagram is set to a 
low frequency to demonstrate how the sound output can be turned off and on, or 
gated, with a sub- audio frequency. 



7

The circuit for a 3-input Diode gate is shown here.  Any number of voices can 
be added by just attaching more Diodes.

If a voice is not being used, it is important to set it LOW (digitalWrite(pin#, 
LOW)) to allow the other voices to sound. If any voice is set HIGH, it will effectively 
close the gate and turn off the other voices. 

Both the Mixer and the Gate circuit can be combined into one circuit with a 
simple switch. However, a more interesting solution might be to use a waveform pan 
circuit as shown above. The Mixer and Gate outputs are connected to either end of a 
potentiometer. With the slider connection as the output, you can continuously pan 
between the two outputs to get any ratio you want of the two. 

To make things even more interesting, consider adding volume controls to 
each of the inputs. 



8

Enhanced 
Gate Circuit



9

The circuit shown above is an improved version of the simple Resistor Mixer 
and Diode Gate circuit. All four inputs now have volume controls which affect the 
modulation in somewhat complex ways. The 4-transistor gate circuit shown here is 
actually a NOR gate (negative OR). The output goes high to 5 volts only when all 
inputs are low; at all other times it remains low at zero volts. 

For those interested I can give a simplified description here of how the 
transistor gate circuit works. Transistors operate in one of three possible states - 
cutoff, saturation, and active. What follows is a description of these three transistor 
states and how they affect the final output. 

Cutoff State 

When a voice input is low near zero volts, which can occur either when the 
squarewave input goes low or when its volume control is turned down, the transistor 
is put in the “cutoff state". This is a passive, or do-nothing state. The other transistors 
are allowed to massage the output in whatever way they want. This transistor will 
not interfere. When all the gate transistors are in this “cutoff” state, the output just 
looks like a 4k7 resistor hanging from 5 volts, which is, in effect, a “high” output, 
hence, the NOR gate definition - the output goes high only when all inputs are low 
with all the transistors in their cutoff state. 

Saturation State 

When a voice volume control is turned all the way up and the waveform goes high 
to 5 volts, the transistor goes into “saturation”. This is a very forceful state because 
the transistor now actively clamps the output line to zero volts, which is the ground 
the one transistor lead is connected to. This overrides what all the other transistors 
are doing. Any input going high will effectively take over the gate output and force it 
to zero volts. 

When all the inputs are turned up in volume, the output waveform is a pulse 
waveform as illustrated in the Diode Gate waveform diagram, except that the output 
is now inverted with the pulses going high. The output has only two states, high and 
low. The transistors will alternate between cutoff (output going high when all of the 
transistors are in cutoff), and saturation (output going low when any of the 
transistors are in saturation). 



10

Active State 

Here is a condition that is not available with the previously described diode 
gate circuit and it offers some very interesting output waveforms.

When a voice volume control is not turned all the way up and the input waveform 
goes high, the transistor tries to go into “saturation” to pull the output line to zero 
but it doesn’t have quite enough “juice” or power to get the job done. The transistor 
is then said to be in its “active” state. It will weakly pull down the output to some 
voltage between the 5 volt high and zero volt low. 

The other transistors can add their effect to this in-between state, either 
clamping it to ground if in saturation, or pulling it closer to ground if in the active 
state. 

Volume controls set in-between fully off or on, have a somewhat strange effect 
on the output. The waveform will no longer be a pulse wave, jumping between only 
two levels, zero and 5 volts. The output highs will still remain at 5 volts, but the lows 
will step to various levels between zero and 5 volts, like a wacky staircase. 



11

For very low input volume control settings on all the inputs, the output lows 
are no longer way down at zero volts; they are closer to the 5 volt highs, creating a 
lower peak to peak output volume. For higher input volume settings on all the 
inputs, the lows steps flirt with getting closer to zero volts, creating a higher peak to 
peak volume. 

See above for an example of the output when all the inputs are set at “in-
between” volumes. Notice that the maximum highs are at 5 volts, the lowest lows are 
above the zero-volt floor, and there are lots of different steps in-between. 

The enhanced transistor gate design offers the advantage of volume control 
even in its digitized output form and it also introduces interesting new timbres 
beyond the usual gated pulse output. 



12

The enhanced mixer circuit, part of the circuit diagram in the previous section, 
starts with a simple three input resistor mixer adding together Voices B, C, and D. 
This is the same circuit shown in the Diode Mixer/Gate except that volume controls 
have been added to all three inputs. The mixer output will sound like three 
squarewave inputs mixed together at different levels. The loss in volume associated 
with any resistor mixer is corrected with an op-amp configuration that has a gain of 4 
(obtained from the equation: 1 + 100k/30k). 

Now for the fun part. The 3-voice mix from the output of the opamp is 
applied to a transistor distortion circuit controlled by Voice A. This is similar to the 
transistor gate circuits above except that the circuit output is connected through a 
4k7 resistor to an actual signal instead of just 5 volts. How this distortion circuit 
works depends on conditions between the mix signal and the VoiceA control signal. 

First of all, when the mix signal goes high the transistor circuit will act in 
exactly the same way as described above in the gate circuit, exhibiting all three 
transistor states of cutoff, saturation, and active state depending on the voltage of 
Voice A. 

However, when the mix signal is low, or zero volts, the transistor has no 
voltage to work with and the output will be low no matter what Voice A is doing. A 
happy consequence of this feature is that any silence in the mix between notes will 
stay silent. You won’t hear the VoiceA modulating signal between notes in the mix. 

When the volume control of Voice A is turned down to zero, the transistor will 
go into cutoff allowing the output to just follow the mix signal. So if you want to just 
hear the straight mix of the other 3 voices without any added modulation, just turn 
down the Voice A control volume. Slowly turning up the control signal from zero will 
gradually add more modulation into the output mix. The modulation will have the 
pitch of Voice A. 

A simple switch is used to select between the transistor gate circuit and the 
modulated mix circuit. A final opamp stage adds volume control to the final signal 
output. 

Enhanced 
Mixer Circuit



13

Fuzz Circuit

The analog distortion circuit, shown above, is inserted in Voice D.  It acts like a 
guitar fuzz box for whatever audio source is connected to the input jack. It can also 
act like another Arduino square wave voice when no external audio signal is present. 

Gain Control 

The first op-amp stage provides a signal gain adjustable from zero to 10. 
Ignoring the Offset control for now, the first stage also sits the input signal on 2.5 
volts which is midway between the power supply ceiling of 5 volts and floor of zero 
volts. 

The second stage adds distortion by chopping off the tops and bottoms of the 
signal in various ways. The IN4148 diodes are key to the signal distortion. They are 
always in one of two states, forward or reverse biased. 



14

Depth Control 

The Diodes are "reverse biased" in the middle voltages of the signal, when the 
signal travels between (2.5v + 0.6v) and (2.5v - 0.6v). In this state the diodes have 
infinite resistance which effectively cuts out the 10k pot leg of the opamp circuit, 
leaving only the 50k pot in series with a 4k7 resistor. The 50k 'Depth" pot then 
provides an adjustable gain from 1 to 10 for the middle of the signal. This basically 
affects how fast the voltages are rising or falling within the waveform. For example, a 
triangle wave with slowly rising and falling legs could be turned into a square wave 
with really fast rising and and falling legs. 

Amount Control 

When the signal voltage rises above 3.1 volts or below 1.9 volts, one of the Diodes 
will "turn on" or become "forward biased". When this happens, the resistance of the 
Diode goes to zero which causes the 10k "Amount" pot to wake up and start affecting 
the gain of the opamp circuit. With the 10k pot turned low, the gain goes to zero 
which chops off the top and bottoms of the input signal turning it into more of a 
square wave heard as a "fuzz". With the 10k pot turned up, the gain is no longer zero. 
So instead of rudely chopping off the tops and bottoms of the signal, the opamp 
merely "squishes" them causing less "buzz" in the sound. This effectively creates a 
"soft" ceiling and floor for the signal tops and bottoms to crash against. 

Knowing that the signal peak chopping and squishing happens around 1.9 
volts and 3.1 volts, you can visualize that the 50k Depth control is used to push the 
peaks more or less into these two voltage areas where "nasty" things happen. 

The figures on the next page show actual oscilloscope readings of the output 
for various settings of the distortion circuit.

Arduino Offset Control 

Added to this traditional “fuzz box” circuit is an Arduino output pin connected to an 
“Offset” control. 



15

Triangle Wave Input

Depth turned up
Amount turned down

peaks accentuated

Depth turned up
Amount set in middle

peaks squished

Depth turned up
Amount turned up

peaks cut off



16

Normally we want the audio signal to sit right in the middle of the power 
supply between zero and 5 volts. For both op amps, a two resistor divider circuit 
creates a 2.5 voltage that is directly connected to the plus input of the op amp. This 
effectively sits the signal right in the middle of the power supply range. If the signal 
peaks try to go above 5 volts or below zero volts, they will get cut off causing 
distortion. Sitting the signal in the middle gives it the maximum amount of space to 
oscillate without hitting the ceiling or floor and distorting. But hey! We like 
distortion so much that we have created our own narrower soft ceiling and floor of 
3.1v and 1.9v with the Diodes and have even added an offset circuit on the first stage 
to mess with the 2.5v level on which the signal normally sits. To get even more 
manic, we have connected an Arduino pin to the offset control. The Arduino can now 
be programmed to bounce the input signal up and down crashing against our Diode 
soft voltage limits. 

So here is how the Arduino Offset Control works. 

With no signal on either the input jack or the Arduino pin, the voice output of 
the second op amp should be a voltage of 2.5 volts. Use a voltmeter to adjust the 
trimmer to get exactly 2.5 volts.  However, the signal at the voice D volume control 
will be sitting at zero volts due to the blocking capacitor.

With no signal on the input jack, Voice D can be made to follow an oscillating 
Arduino pin voltage, acting like the other digital input voices. Turn up the Offset and 
Depth controls to make this happen. 

With an input signal and the Arduino pin programmed to oscillate, the offset 
pot controls how much the input signal is bounced up and down at the frequency of 
the Arduino square wave. 

The Arduino output used for the offset control is a square wave. The sharp 
transitions of the square wave result in audible clicks in the output. A capacitor 
across the 10k offset pot would help filter out some of the "clicking". As an 
afterthought though, a better solution would be to use an Arduino with a DAC 
output programmed to produce a sinewave type waveform for the offset signal.



17

Arduino Pro Micro



18

• An Arduino Pro Micro was used for this project. Be sure to get the 5 volt version 
of the board, not the 3.3 volt version. 

• Four pins are connected to the Voice inputs of the Enhanced Mixer/Gate circuit. 
Note that Voice D goes through the Analog Fuzz circuit first so that it can directly 
affect an audio signal plugged into the input jack. 

• These same output pins could also be sent to the simpler resistor mixer and diode 
gate circuit if you like. The Arduino programs shown later should also work with 
this simpler circuit. 

• It is worth mentioning that another type of Arduino could be used with this 
project with one complication. Most of the newer Arduinos use 3.3 volt operation 
voltages. The switches and controller pots would use 3.3 volts also. Our circuit op 
amps, however, would not do very well with only 3.3 volt power. You would need 
to find a higher power source for the Mixer/Gate/Distortion circuitry. 

• Five pins, to be programmed as ADC analog inputs, are connected to five 
controller potentiometers. 

• Four pins, to be programmed as digital inputs, are connected to 2 slide switches 
and 2 pushbutton switches. 

• Two pins are connected to LED indicator lights. 

• The Arduino and Mixer/Gate/Distortion circuit can all be mounted on a small 
circuit board. Sockets are needed for the Arduino and the three chips. Edge 
connectors are used to help connect to all the chassis hardware. You will need to 
have some experience soldering a circuit together from circuit diagrams. 

• A USB cable is needed for programming the Arduino. It can also supply the 5 
volt power needed for the circuit. As an option, the Pro Micro has a RAW power 
input pin to connect a 9 volt power supply. The chassis has an on/off switch that 
can be used with an external supply. 



19

The Box



20

The chassis used 
for this project was 
a smal l MIX800 
m ixe r ava i l ab l e 
from Ebay. Using a 
solder sucker, I 
removed the circuit 
board and kept all 
the pots, switches, 
and LED indicator 
lights, plus some of 
the jacks.  



21

T h e re w e re 3 3 
c o n n e c t i o n s 
between the circuit 
b o a r d a n d t h e 
chassis. To help 
manage this rat’s 
nest, I used edge 
connectors on the 
circuit board and 
r ibbon cable to 
m a k e t h e 
connections.  



22

Synth Test Program
This program continuously prints the values of the 5 pots and 4 switches.  It 

also sets up tones in two voices.  Use the Monitor in the Arduino app to see the 
control values displayed.

/* 
      Arduino Distortion Unit
      Test Program
      Continuously print out the values from the 5 pots and 4 switches.
      
*/
//
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~
//                      CONSTANTS and Variables
//
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~
//
// For use on an Arduino Pro Micro.  

// 
// ANALOG INPUTS
//
const int POT1 = A0;  //Potentiometer pin numbers
const int POT2 = A1;
const int POT3 = A2;
const int POT4 = A3;
const int POT5 = A7;



23

int pot1 = 0;
int pot2 = 0;
int pot3 = 0;
int pot4 = 0;
int pot5 = 0;

//
//DIGITAL SWITCHES
//  
const int S1 = 7;  //Switch pin numbers
const int S2 = 8;
const int S3 = 16;
const int S4 = 14;

boolean switch1 = 0;
boolean switch2 = 0;
boolean pushbutton1 = 0;
boolean pushbutton2 = 0;

//
// SYTHESIZER CONSTANTS
//

const int VOICEA = 5;  //Voice pin numbers
const int VOICEB = 4;
const int VOICEC = 2;
const int VOICED = 3;

const int LED1 = 9;  //Led pin numbers
const int LED2 = 10;



24

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      SETUP()
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void setup() {

delay(1000);
  
pinMode(LED1, OUTPUT);    //turn on LED1 as power indicator
digitalWrite(LED1, HIGH);

pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VOICEA, OUTPUT);    //Lows enable distortion gates
digitalWrite(VOICEA, LOW);
pinMode(VOICEB, OUTPUT);
digitalWrite(VOICEB, LOW);
pinMode(VOICEC, OUTPUT);  
digitalWrite(VOICEC, LOW);
pinMode(VOICED, OUTPUT);  
digitalWrite(VOICED, HIGH);  //Set simple offset for Distortion Input
                             //Turn down when not using 

pinMode(S1, INPUT);  // Set up switch inputs with pullup resistors
digitalWrite(S1, HIGH);
pinMode(S2, INPUT);
digitalWrite(S2, HIGH);
pinMode(S3, INPUT);
digitalWrite(S3, HIGH);
pinMode(S4, INPUT);
digitalWrite(S4, HIGH);
                     
 Serial.begin(9600);

} //End of Setup



25

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      MAIN LOOP
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void loop() {
 
  loadSensors();
  
   Serial.print("pot1 = ");
  Serial.print(pot1);
    Serial.print("  pot2 = ");
  Serial.print(pot2);
    Serial.print("   pot3 = ");
  Serial.print(pot3);
    Serial.print("   pot4 = ");
  Serial.print(pot4);
    Serial.print("   pot5 = ");
  Serial.print(pot5);
  
     Serial.print("     ");

    Serial.print("  switches ");
  Serial.print(switch1);
  Serial.print(switch2);
  Serial.print(pushbutton1);
  Serial.println(pushbutton2);

// ~~~~~~~~~~~~~~~~~Voice Tests ~~~~~~~~~~~~~~~~~~~~~~~~~

  tone(VOICEA, (100 + pot1));  // Voice A frequency put on pot 1

int v = map(pot2, 0, 255, 1, 40);  // Voice B frequency put on pot 2
  digitalWrite(VOICEB, HIGH);
  delay(v);
  digitalWrite(VOICEB, LOW);
  delay(v);

} 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      END OF MAIN LOOP



26

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void loadSensors(){      // load all current sensor values
      pot1 =   analogRead(POT1);
      pot2 =   analogRead(POT2);
      pot3 =   analogRead(POT3);
      pot4 =   analogRead(POT4);
      pot5 =   analogRead(POT5);    
      switch1 = digitalRead(S1);
      switch2 = digitalRead(S2);
      pushbutton1 = digitalRead(S3);
      pushbutton2 = digitalRead(S4);
}
 



27

Modulated Voices 
Program

This program can be used with any of the circuits described above - a simple 
diode gate, a simple resistor mixer, a combination of both, the enhanced transistor 
gate, the enhanced mixer, or a combination of both.  Both the program and and the 
circuit can easily be modified for any number of voices.   

In this program a pot sweeps the frequency of each voice.  The first voice uses 
the the Arduino tone() function reading the value of Slider1 for its frequency.  The 
pot value can be mathematically massaged for any desired range of frequencies.  The 
value is directly translated into Hertz by the tone() function.

The second and third voices use the counter and pin toggling approach to 
create a squarewave  as described in the first section of this paper.   Each voice 
counter is loaded with a value derived from its own slider.  Again, the slider value 
can be mathematically massaged for any frequency range.  If that range goes into 
sub-audio frequencies you can get some interesting pulsing on-off effects.

Switches were added to silence two of the voices.  To silence a counter voice 
set its value LOW and bypass the counter decrement in the program.  Don’t make the 
mistake of setting the voice HIGH; in an OR gate a HIGH will turn off all the voices.

Sweeping frequencies against each other creates interesting modulation 
effects.  However, if you want to get away from sweeping sounds, have the pots 
address an array of discrete counter values instead or have a switch step through an 
array of set values or trigger random values.   The possibilities are endless.  Enjoy 
exploring but be careful to keep the program short as the length of the program 
affects the speed of the counter decrement, limiting how high in frequency the voices 
can get.  

What follows is the Arduino Synth program code.



28

/* 

       3-VOICE ARDUINO SYNTHESIZER

      

      3 squarewave tones produced from Arduino pins 

      

      Slider1 - Sets Frequency of Tone1 with arduino tone()

      Slider2 - Sets Frequency of Tone2

      Slider3 - Sets Frequency of Tone3 

      Slider4 - Sets the decrement clock


      Switch1 - turns off or on Tone2

      Switch2 - turns off or on Tone3 


Arduino's tone() function can only be used to set up a squarewave on one output.

Two more voices are created from a fast loop clock decrementing two freq values and toggling voice outputs

when they reach zero.  The freq values determine the frequency of the voices.


      

*/

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//                      CONSTANTS and Variables

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//

// For use on an Arduino Pro Micro.  


// 

// ANALOG INPUTS

//

const int POT1 = A0;  //Potentiometer pin numbers

const int POT2 = A1;

const int POT3 = A2;

const int POT4 = A3;

const int POT5 = A7;


int pot1 = 0;

int pot2 = 0;

int pot3 = 0;

int pot4 = 0;

int pot5 = 0;


//

//DIGIITAL SWITCHES

//  

const int S1 = 7;  //Switch pin numbers

const int S2 = 8;

const int S3 = 16;

const int S4 = 14;


boolean switch1 = 0;

boolean switch2 = 0;

boolean pushbutton1 = 0;

boolean pushbutton2 = 0;




29

//

// SYTHESIZER CONSTANTS

//


const int VOICEA = 5;  //Voice pin numbers

const int VOICEB = 4;

const int VOICEC = 2;

const int VOICED = 3;


const int LED1 = 9;  //Led pin numbers

const int LED2 = 10;


int freq2 = 100;  //variables to set voice frequencies

int freq3 = 100;


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//                      SETUP()

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


void setup() {


delay(1000);

  

pinMode(LED1, OUTPUT);    //turn on LED1 as power indicator

digitalWrite(LED1, HIGH);


pinMode(LED2, OUTPUT);

digitalWrite(LED2, LOW);


pinMode(VOICEA, OUTPUT);    //Lows enable distortion gate

digitalWrite(VOICEA, LOW);

pinMode(VOICEB, OUTPUT);

digitalWrite(VOICEB, LOW);

pinMode(VOICEC, OUTPUT);   

digitalWrite(VOICEC, LOW);

pinMode(VOICED, OUTPUT);

digitalWrite(VOICED, HIGH);  //Set simple offset for Distortion Input

                             //Turn down when not using 


pinMode(S1, INPUT);  // Set up switch inputs with pullup resistors

digitalWrite(S1, HIGH);

pinMode(S2, INPUT);

digitalWrite(S2, HIGH);

pinMode(S3, INPUT);

digitalWrite(S3, HIGH);

pinMode(S4, INPUT);

digitalWrite(S4, HIGH);

                     

 Serial.begin(9600);


} //End of Setup




30

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//                      MAIN LOOP

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


void loop() {

                                         

    tone(VOICEA, (analogRead(POT1) << 2));  // set frequency of Voice1 using tone( )

    

    delayMicroseconds(analogRead(POT4) << 4);  // wait before continuing, sets main loop clock


    freq2 = voiceRun(digitalRead(S1), VOICEC, freq2, POT2);  // Voice2                                                 


    freq3 = voiceRun(digitalRead(S2), VOICEB, freq3, POT3);  // Voice3

     

}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//                    END OF MAIN LOOP

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


 int voiceRun(bool off_on, int voicePin, int freq, int potPin){

  

   if (off_on) { digitalWrite(voicePin, LOW); }

   

            else{

              --freq;

              if (freq <= 0){

                  digitalWrite(voicePin, !digitalRead(voicePin));

                  freq = analogRead(potPin) >> 4;

              }

            }

  return freq;       

  } 


  //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~




31

Random Note 
Program

/* 

       3-VOICE ARDUINO SYNTHESIZER

      

      2 Voices with tones randomly produced and modulated by Voice A

      

      Pot1 - Sets base Frequency of Voice B

      Pot2 - Sets Frequency Range of Voice B

      Pot3 - Sets base Frequency of Voice C 

      Pot4 - Sets Frequency Range of Voice C


      Switch1 - Selects between Pot5 setting the frequency of Voice A

                or setting overall note durations

      Switch2 - Stops everything at current sounding voices


Arduino's tone() function can only be used to set up a squarewave on one output.

Two more voices are created from the fast loop clock decrementing two freq values and toggling voice outputs

when they reach zero.  The freq values determine the frequency of the voices.


      

*/

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//                      CONSTANTS and Variables

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//

// For use on an Arduino Pro Micro.  


// 

// ANALOG INPUTS

//

const int POT1 = A0;  //Potentiometer pin numbers

const int POT2 = A1;

const int POT3 = A2;

const int POT4 = A3;

const int POT5 = A7;


int pot1 = 0;

int pot2 = 0;

int pot3 = 0;

int pot4 = 0;

int pot5 = 0;




32

//

//DIGIITAL SWITCHES

//  

const int S1 = 7;  //Switch pin numbers

const int S2 = 8;

const int S3 = 16;

const int S4 = 14;


boolean switch1 = 0;

boolean switch2 = 0;

boolean pushbutton1 = 0;

boolean pushbutton2 = 0;


//

// SYTHESIZER CONSTANTS

//


const int VOICEA = 5;  //Voice pin numbers

const int VOICEB = 4;

const int VOICEC = 2;

const int VOICED = 3;


const int LED1 = 9;  //Led pin numbers

const int LED2 = 10;


int freqA = 100;  //variables to set voice frequencies

int freqB = 100;

int freqC = 100;

int freqD = 100;


int countA = 100;

int countB = 100;

int countC = 100;

int countD = 100;


long A_on =0;

long B_on =0;

long C_on =0;

long D_on =0;


long A_off = 100;

long B_off = 100;

long C_off = 100;

long D_off = 100;


long dur = 100;

bool stopV = 0;




33

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//                      SETUP()

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


void setup() {


delay(1000);

  

pinMode(LED1, OUTPUT);    //turn on LED1 as power indicator

digitalWrite(LED1, HIGH);


pinMode(LED2, OUTPUT);

digitalWrite(LED2, LOW);


pinMode(VOICEA, OUTPUT);    //Lows enable distortion gate

digitalWrite(VOICEA, LOW);

pinMode(VOICEB, OUTPUT);

digitalWrite(VOICEB, LOW);

pinMode(VOICEC, OUTPUT);   

digitalWrite(VOICEC, LOW);

pinMode(VOICED, OUTPUT);

digitalWrite(VOICED, LOW);  


pinMode(1, INPUT);  // Set up switch inputs with pullup resistors

digitalWrite(S1, HIGH);

pinMode(S2, INPUT);

digitalWrite(S2, HIGH);

pinMode(S3, INPUT);

digitalWrite(S3, HIGH);

pinMode(S4, INPUT);

digitalWrite(S4, HIGH);


} //End of Setup


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//                      MAIN LOOP

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


void loop() {


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//                     VOICE A

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


if (digitalRead(S1)){                        // divide up use of pot5 with Switch1

    dur = analogRead(POT5) >> 3;             //set envelope durations 

}

          else{                                    

          tone(VOICEA, (50 + analogRead(POT5)));  // set frequency of VoiceA using tone

          }                                     




34

 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//                      VOICE B

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


if (B_on != 0){                                // if Voice is on, sounding 

    if (stopV) {--B_on ;}

    

     --countB;                       // run the voice frequency toggling routine

    if (countB <= 0){

                      digitalWrite(VOICEB, !digitalRead(VOICEB));

                      countB = freqB;

    }

    

              if (B_on == 0){                  // turn off voice if at end of on-duration

                digitalWrite(VOICEB, LOW);

                B_off = random(1, dur) << 4 ;  // get random 8 bit duration for B off time

                freqB = getFreqB();            // get new random frequency for voice

              }   

}


// ------------ 


else if (B_off != 0){                          // if Voice is off, not sounding 

     --B_off;

              if (B_off == 0){                 // turn on voice if at end of off-duration

                 B_on = random(1, dur) << 4 ;  // get random duration for on time 

              }

}

                 


//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//                      VOICE C

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


if (C_on != 0){                                // if Voice is on, sounding 

    if (stopV){--C_on ;}

    

    --countC;                       // run the voice frequency toggling routine

    if (countC <= 0){

                      digitalWrite(VOICEC, !digitalRead(VOICEC));

                      countC = freqC;

    }

    

              if (C_on == 0){                  // turn off voice if at end of on-duration

                digitalWrite(VOICEC, LOW);

                C_off = random(1, dur) << 4 ;  // get random 8 bit duration for B off time

                freqC = getFreqC();            // get new random frequency for voice

              }   

}


// ------------ 


else if (C_off != 0){                          // if Voice is off, not sounding 

     --C_off;

              if (C_off == 0){                 // turn on voice if at end of off-duration

                 C_on = random(1, dur) << 4 ;  // get random duration for on time 

              }




35

}


    

// ------------Switch2  stops everything to sounding notes---------------------    

    

                             stopV = digitalRead(S3);

                            

} 

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

//                     END OF MAIN LOOP

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


int getFreqB() {   // getting random frequency for Voices

        

    int basefreq = analogRead(POT3) >> 4;

    int result = basefreq + random(analogRead(POT4) >> 3); // range of frequencies around the base

    return result;

}


int getFreqC() {   // getting random frequency for Voices

        

    int basefreq = analogRead(POT1) >> 4;

    int result = basefreq + random(analogRead(POT2) >> 3); // range of frequencies around the base

    return result;

}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~




36

Arduino MIDI
Synth Program

	 This program produces three voice polyphony played from a MIDI keyboard 
and modulated by Voice A. 

The Arduino Pro Micro can be used as a USB type MIDI device using the Library 
USBMIDI.h.  In fact, any Arduino board that uses the ATmega32U4 processor has HID 
capabilities and thus can be set up as a MIDI device over USB.

This program sets up MIDI control over Voices B, C, and D using MIDI NoteOn 
and NoteOff commands.  Voice A is used to modulate the other voices.  It uses the 
Arduino tone( ) function and a pot to control its frequency.  

Alternatively, the tone( ) function could be used to generate equal temperament 
pitches by using the MIDI Note number to index an array of equal temperament 
frequencies.  Note that the lowest notes are not accurate due to some limitations in the 
tone( ) function.

unsigned long toneFreq[128] = {8, 9, 9, 10, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 19, 21, 
    22, 23, 24, 26, 28, 29, 31, 33, 35, 37, 39, 41, 44, 46, 49, 52, 55, 58, 62, 65, 69, 73, 78, 

    82, 87, 92, 98, 104, 110, 117, 123, 131, 139, 147, 156, 165, 175, 185, 196, 208, 220, 233, 
    247, 262, 277, 294, 311, 330, 349, 370, 392, 415, 440, 466, 494, 523, 554, 587, 622, 659, 
    698, 740, 784, 831, 880, 932, 988, 1047, 1109, 1175, 1245, 1319, 1397, 1480, 1568, 1661, 

    1760, 1865, 1976, 2093, 2217, 2349, 2489, 2637, 2794, 2960, 3136, 3322, 3520, 3729, 3951, 
    4186, 4435, 4699, 4978, 5274, 5588, 5920, 5920, 6645, 7040, 7459, 7902, 8372, 8870, 9397, 

    9956, 10548, 11175, 11840, 12544};

This array assigns a frequency to each of 127 MIDI note numbers or keys on a 
MIDI keyboard.  



37

Voices B, C, and D produce squarewaves by counting down from a counter value 
at the speed of the main loop program.  The output pin is toggled when the counter 
reaches zero and is reloaded.  The values loaded into the counter come from another 
array.  If the squarewave produced is to oscillate at the same equal temperament 
frequencies given in the array above, this array must be filled with values given by the 
formula:

Array Value = (loop frequency)/(2 * note-frequency)

The Note On routine includes a commented-out Serial.println( ) command that 
will print out the time period in microseconds that the main loop( ) program takes to 
complete one pass through the loop. The loop frequency is then just 1 divided by the 
loop time period.  In the current program the loop period turned out to be 44 
microseconds which results in the following array of values used to produce equal 
temperament frequencies for each of 128 MIDI Note values (calculated in a spreadsheet 
program).

 unsigned long freqTable[128] = {1389, 1312, 1238, 1169, 1103, 1042, 983, 928, 875, 826, 780, 
    736, 695, 656, 619, 584, 552, 521, 492, 464, 438, 413, 390, 368, 348, 328, 310, 292, 276, 
    260, 246, 232, 219, 207, 195, 184, 174, 164, 155, 146, 138, 130, 123, 116, 109, 103, 98, 

    92, 87, 82, 77, 73, 69, 65, 61, 58, 55, 52, 49, 46, 43, 41, 39, 37, 34, 33, 31, 29, 27, 
    26, 24, 23, 22, 20, 19, 18, 17, 16, 15, 14, 14, 13, 12, 12, 11, 10, 10, 9, 9, 8, 8, 7, 7, 

    6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1}; 

Notice that there is no way the values at the top of the array can produce 
accurate, in tune, pitch frequencies.  These smaller values have high tuning errors due 
to the somewhat long loop time of 44 microseconds.  The tunings for Voices B and C 
start getting off around A 440 with the array value of 26.  Though not ideal, this 
mistuning of pitch values for the higher notes may not be as noticeable if used with 
Gate distortion.  The problem could be improved by somehow shortening the main 
loop program, or using a faster Arduino board.



38

With this program, your Synthesizer will show up as an Arduino MIDI device 
when its USB is connected to your computer.  Connect any USB MIDI keyboard also to 
your computer to control the Synthesizer from the MIDI keyboard. 

You will need some way of telling the computer to connect the output of the USB 
Keyboard to the USB Arduino MIDI device input. This may require a special app on 
your computer. 

The free app MidiPipe can be used on a Mac to make USB connections. Create a 
Pipe with the Tools "MIDI In" at the top followed by "MIDI Out". Select your MIDI 
keyboard from "MIDI In" pull-down selections and the Arduino from "MIDI Out". 

  



39

/* 
      Arduino Distortion Synthesizer
      MIDI Program
      
      Uses MIDIUSB.h library to receive MIDI commands over the USB cable
      Works with all Arduinos that have the ATmega32U4 processor.  
      These have HID capabilities.

      VoiceA is used to modulate the other three voices.  It uses the tone( ) function
      
      Voices B, C, and D are controlled from a USB MIDI keyboard.

      
*/
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      CONSTANTS and Variables
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// For use on an Arduino Pro Micro.  

#include "MIDIUSB.h"

// 
// ANALOG INPUTS
//
const int POT1 = A0;  //Potentiometer pin numbers
const int POT2 = A1;
const int POT3 = A2;
const int POT4 = A3;
const int POT5 = A7;

int pot1 = 0;
int pot2 = 0;
int pot3 = 0;
int pot4 = 0;
int pot5 = 0;

//
//DIGIITAL SWITCHES
//  
const int S1 = 7;  //Switch pin numbers
const int S2 = 8;
const int S3 = 16;
const int S4 = 14;

boolean switch1 = 0;
boolean switch2 = 0;



40

boolean pushbutton1 = 0;
boolean pushbutton2 = 0;

//
// SYTHESIZER CONSTANTS
//

const int VOICEA = 5;  //Voice pin numbers
const int VOICEB = 4;
const int VOICEC = 2;
const int VOICED = 3;

const int LED1 = 9;  //Led pin numbers
const int LED2 = 10;

// Table for the countdown values used to set equal temperament frequecies for Voices B, C and D
// Values calculated in a spreadsheet:  (loop-Frequency)/(2 * MIDI-Note-Frequency) 
// Recalculate for different loop-frequencies.  Tuning is off for the higher keys. 

/*
 unsigned long MIDI_Note_Freq[128] = {8, 9, 9, 10, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 19, 21, 
    22, 23, 24, 26, 28, 29, 31, 33, 35, 37, 39, 41, 44, 46, 49, 52, 55, 58, 62, 65, 69, 73, 78, 
    82, 87, 92, 98, 104, 110, 117, 123, 131, 139, 147, 156, 165, 175, 185, 196, 208, 220, 233, 
    247, 262, 277, 294, 311, 330, 349, 370, 392, 415, 440, 466, 494, 523, 554, 587, 622, 659, 
    698, 740, 784, 831, 880, 932, 988, 1047, 1109, 1175, 1245, 1319, 1397, 1480, 1568, 1661, 
    1760, 1865, 1976, 2093, 2217, 2349, 2489, 2637, 2794, 2960, 3136, 3322, 3520, 3729, 3951, 
    4186, 4435, 4699, 4978, 5274, 5588, 5920, 5920, 6645, 7040, 7459, 7902, 8372, 8870, 9397, 
    9956, 10548, 11175, 11840, 12544};
*/

unsigned long freqTable[128] = {1389, 1312, 1238, 1169, 1103, 1042, 983, 928, 875, 826, 780, 
    736, 695, 656, 619, 584, 552, 521, 492, 464, 438, 413, 390, 368, 348, 328, 310, 292, 276, 
    260, 246, 232, 219, 207, 195, 184, 174, 164, 155, 146, 138, 130, 123, 116, 109, 103, 98, 
    92, 87, 82, 77, 73, 69, 65, 61, 58, 55, 52, 49, 46, 43, 41, 39, 37, 34, 33, 31, 29, 27, 
    26, 24, 23, 22, 20, 19, 18, 17, 16, 15, 14, 14, 13, 12, 12, 11, 10, 10, 9, 9, 8, 8, 7, 7, 
    6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1};   

//current note on's for Arduino pin voices A, B, and C.  Use note value 0 for "not on". 

byte CurrentNoteOn[3] = {0, 0, 0}; 

int freqA = 100;  //variables to set voice frequncies
int freqB = 100;
int freqC = 100;
int freqD = 100;



41

unsigned long deltamicro = 0;
unsigned long lastmicro = 0;

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      SETUP()
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void setup() {

delay(1000);
tone(VOICEA, 64, 200);
tone(VOICEA, 164, 200);
  
pinMode(LED1, OUTPUT);    //turn on LED1 as power indicator
digitalWrite(LED1, HIGH);

pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VOICEA, OUTPUT);    //Lows enable distortion gates
digitalWrite(VOICEA, LOW);
pinMode(VOICEB, OUTPUT);
digitalWrite(VOICEB, LOW);
pinMode(VOICEC, OUTPUT);  
digitalWrite(VOICEC, LOW);
pinMode(VOICED, OUTPUT);  
digitalWrite(VOICED, LOW);                               

pinMode(S1, INPUT);  // Set up switch inputs with pullup resistors
digitalWrite(S1, HIGH);
pinMode(S2, INPUT);
digitalWrite(S2, HIGH);
pinMode(S3, INPUT);
digitalWrite(S3, HIGH);
pinMode(S4, INPUT);
digitalWrite(S4, HIGH);
                     
// Serial.begin(115200);   //Used to read loop time    

} //End of Setup



42

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      MAIN LOOP
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void loop() {

//  deltamicro = micros() - lastmicro;   //Used to read loop time  (44usec with an arduino Mega board ??)
//  lastmicro = micros();                // Loop Frequency = 1/deltamicro  (deltamicro is in microseconds)

// Arduino's tone() function can only be used to set up a squarewave on one output - VoiceA.
// Three more voices are created from a fast loop time decrementing "freq" values and toggling voice
// outputs when they reach zero.  The "freq" values determine the frequency of the voices.

//VoiceA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                                                   
    
       tone(VOICEA, (50 + analogRead(POT5)));  // set frequency of VoiceA using tone, used as modulator
      

  //VoiceB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

      if (CurrentNoteOn[0] != 0) {
        --freqB;                                         // decrement Voice B freqB counter
        if (freqB <= 0){
            digitalWrite(VOICEB, !digitalRead(VOICEB));  //toggle Voice B pin when counter reaches zero
            freqB = freqTable[CurrentNoteOn[0]];         //reload counter from table
            
      }
        }  
            
  //VoiceC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

      if (CurrentNoteOn[1] != 0) {                       // same as above for  Voice C
        --freqC;
        if (freqC <= 0){
            digitalWrite(VOICEC, !digitalRead(VOICEC));
           freqC = freqTable[CurrentNoteOn[1]];
          
      }
        }   

 //VoiceD ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

      if (CurrentNoteOn[2] != 0) {                       // same as above for  Voice D
        --freqD;
        if (freqD <= 0){
            digitalWrite(VOICED, !digitalRead(VOICED));



43

            digitalWrite(VOICED, !digitalRead(VOICED));
           freqD = freqTable[CurrentNoteOn[2]];
          
      }
        }          

//--------------------------------------------------------------------------------

midiEventPacket_t rx = MidiUSB.read();

  switch (rx.header) {
    
    case 0:
                break; //No pending events
      
    case 0x9:  //NoteOn

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    
   //   Serial.println(deltamicro);  //used to find the loop time in microseconds

   if (rx.byte3 == 0){    //  Note OFF, note velocity of zero.
    
              for (int x = 0; x < 3; x ++){    // search through the 3 Arduino pin voices
                
                    if (CurrentNoteOn[x] == rx.byte2){ // voice playing to turn off?

                                   switch (x) {           
                                   case 0:                   
                                     CurrentNoteOn[x] = 0;
                                     digitalWrite(VOICEB, LOW);  
                                     break;                                 
                                  case 1:                    
                                     CurrentNoteOn[x] = 0; 
                                     digitalWrite(VOICEC, LOW);  
                                     break;                                 
                                  case 2:                   
                                     CurrentNoteOn[x] = 0; 
                                     digitalWrite(VOICED, LOW);        
                                     break;       
                                   }  // end of switch 
                                                                           
                     }  // end of Note check                  
                     }  // end of for loop                   



44

   }
   else{    //Note ON,  note velocity not zero
              for (int x = 0; x < 3; x ++){    // search through the 3 Arduino pin voices
                
                    if (CurrentNoteOn[x] == 0){      // this voice is available                                                                          
                            CurrentNoteOn[x] = rx.byte2;  //pitch                                                     
                            break;  //  break out of voice search loop   
                                                              
                     }  // end of Note On check                     
                     }  // end of for loop
   }
                break;
    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

       
    case 0x8: // Note Off

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    for (int x = 0; x < 3; x ++){     // search through the 3 AY voices

    if (CurrentNoteOn[x] == rx.byte2){    // which voice is playing the note to turn off?

                 switch (x) {           
                 case 0:                   
                   CurrentNoteOn[x] = 0;
                   digitalWrite(VOICEB, LOW);  
                   break;                                 
                case 1:                    
                   CurrentNoteOn[x] = 0; 
                   digitalWrite(VOICEC, LOW);  
                   break;                                 
                case 2:                   
                   CurrentNoteOn[x] = 0; 
                   digitalWrite(VOICED, LOW);        
                   break;       
                 }  // end of switch 
                                                                           
           }  // end of Note check

     
           }  // end of for loop
                break;
    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~            
                
    case 0xB:  // control Change     
                break;



45

      
    default:
                 break;      
  }
   
} 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      END OF MAIN LOOP
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 



46

This program builds on the previous MIDI  Program by adding performance 
recording and playback capabilities.  Throw the Record Switch to record up to 50 MIDI 
events and their times.  Throw the Playback switch to continuously repeat the recorded 
material.  Notes can be played live over the playback when voices are available.

 Four 50 value arrays were created to hold event information - Event time, MIDI 
Note Number, Note Velocity, and Voice number (1, 2, or 3).  The ability to record and 
playback up to 50 events works well for MIDI Note On and Off events.  MIDI Control 
events, however,  are usually very dense and would quickly overwhelm any size event 
array built in the limited memory space of the Arduino.  For this reason, the program 
only covers MIDI Note On and Off events.

A timer function is needed to record event times. The Arduino millis( ) function 
is close to what is needed.  Millis( ) returns the number of milliseconds passed since the 
board was powered on.  Ideally, what is really needed is a millis( ) function that can be 
reset to zero time whenever a recording or playback is started.  Sadly, this function can’t 
be reset to zero, however, a work-around is possible.  At start times a function called 
timestamp( ) reads the current millis( ) time value and stores it in a variable called 
startTime.  timeStamp( ) is called at the start of recording, and at the start and repeat 
times of playback.  Then, instead of using millis( ) directly, the function dur( ) is called 
which returns the value (millis( ) - startTime).  

During recording, the dur( ) value is store in the eventTimes[ ] array whenever a 
MIDI Note ON or MIDI Note OFF event occurs, after which the array index is 
incremented to the next position in the array, ready for the next event. 

During playback, dur( ) is compared with the next eventTime[ ] in the array.  
This happens once every time through the main loop( )  or, in our case, once every 44 
microseconds.  If the current time dur( ) is greater than or equal to the stored 
eventTime[ ] then the event is played, pulling data from same index position in the 
other arrays - eventNotes[ ], eventVelocity[ ], and eventVoice[ ].  The index value into 
the arrays is then incremented to prepare for picking up the next event values.

MIDI Record 
and Playback



47

Two switches are watched in the main loop( ) program, one for record and one 
for playback.  During playback, the note events in the arrays are repeated until the 
playback switch is turned off.  At the start of each repetition the timeStamp( ) function 
is called to reset the dur( ) time to zero.  

The Record/Playback feature of this program is useful but adds a lot of time to 
the loop( ) function which will degrade the higher pitch accuracy for those voices that 
use counters in the loop to build their waveforms. 

What follows is the MIDI Synth program code.
  



48

/* 
      Arduino Distortion Unit
      MIDI Program
      Uses MIDIUSB.h library to run MIDI commands over the USB cable
      Works with all Arduinos that have the ATmega32U4 processor.  
      These have HID capabilities.
      
      VoiceA is used to modulate the other three voices.  It uses the tone( ) function
      
      Voices B, C, and D are controlled from a USB MIDI keyboard.

      Switch 1 (lower) can be turned on to record up to 50 note events and times.
      Switch 2 (upper) can be turned on to play back the recorded notes.
      
*/
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      CONSTANTS and Variables
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// For use on an Arduino Pro Micro.  

#include "MIDIUSB.h"

// 
// ANALOG INPUTS
//
const int POT1 = A0;  //Potentiometer pin numbers
const int POT2 = A1;
const int POT3 = A2;
const int POT4 = A3;
const int POT5 = A7;

int pot1 = 0;
int pot2 = 0;
int pot3 = 0;
int pot4 = 0;
int pot5 = 0;

//
//DIGIITAL SWITCHES
//  
const int S1 = 7;  //Switch pin numbers
const int S2 = 8;
const int S3 = 16;
const int S4 = 14;

boolean switch1 = 0;
boolean switch2 = 0;
boolean pushbutton1 = 0;
boolean pushbutton2 = 0;

//
// SYTHESIZER CONSTANTS
//



49

const int VOICEA = 5;  //Voice pin numbers
const int VOICEB = 4;
const int VOICEC = 2;
const int VOICED = 3;

const int LED1 = 9;  //Led pin numbers
const int LED2 = 10;

//tone() frequency values for equal temperament A440 MIDI NoteON commands.  Used for VoiceA

// Note the limitations of tone() which at 16mhz specifies a minimum frequency of 31hz - in other words, notes 
below
// B0 will play at the wrong frequency since the timer can't run that slowly!

unsigned long toneFreq[128] = {8, 9, 9, 10, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 19, 21, 
    22, 23, 24, 26, 28, 29, 31, 33, 35, 37, 39, 41, 44, 46, 49, 52, 55, 58, 62, 65, 69, 73, 78, 
    82, 87, 92, 98, 104, 110, 117, 123, 131, 139, 147, 156, 165, 175, 185, 196, 208, 220, 233, 
    247, 262, 277, 294, 311, 330, 349, 370, 392, 415, 440, 466, 494, 523, 554, 587, 622, 659, 
    698, 740, 784, 831, 880, 932, 988, 1047, 1109, 1175, 1245, 1319, 1397, 1480, 1568, 1661, 
    1760, 1865, 1976, 2093, 2217, 2349, 2489, 2637, 2794, 2960, 3136, 3322, 3520, 3729, 3951, 
    4186, 4435, 4699, 4978, 5274, 5588, 5920, 5920, 6645, 7040, 7459, 7902, 8372, 8870, 9397, 
    9956, 10548, 11175, 11840, 12544};

// Table for the countdown values used to set equal temperament frequecies for Voices B and C
// Values calculated in a spreadsheet:  (loop-Frequency)/(2 * MIDI-Note-Frequency)   

unsigned long freqTable[128] = {1389, 1312, 1238, 1169, 1103, 1042, 983, 928, 875, 826, 780, 
    736, 695, 656, 619, 584, 552, 521, 492, 464, 438, 413, 390, 368, 348, 328, 310, 292, 276, 
    260, 246, 232, 219, 207, 195, 184, 174, 164, 155, 146, 138, 130, 123, 116, 109, 103, 98, 
    92, 87, 82, 77, 73, 69, 65, 61, 58, 55, 52, 49, 46, 43, 41, 39, 37, 34, 33, 31, 29, 27, 
    26, 24, 23, 22, 20, 19, 18, 17, 16, 15, 14, 14, 13, 12, 12, 11, 10, 10, 9, 9, 8, 8, 7, 7, 
    6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1};   

byte eventNotes[50] = {0};           //holds recorded Midi Input NoteOn
unsigned long eventTimes[50] = {0};  //holds recorded times of Notes
byte eventVelocity[50] = {0};        // holds recorded note velocities
byte eventVoice[50] = {0};           // holds recorded voice assignment of notes

unsigned long eventTime = 0;
unsigned long startTime = 0; // created by timestamp()
int currentTime = 0;

int  eventIndex = 0;  // holds position within the 4 record arrays
bool record = 0;
bool playback = 0;

//current note on's for Arduino pin voices A, B, and C.  Use note value 0 for "not on". 

byte CurrentNoteOn[3] = {0, 0, 0}; 

int freqA = 100;  //variables to set voice frequencies
int freqB = 100;
int freqC = 100;
int freqD = 100;



50

unsigned long deltamicro = 0;
unsigned long lastmicro = 0;

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      SETUP()
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void setup() {

delay(1000);
tone(VOICEA, 64, 200);
delay(300);
tone(VOICEA, 164, 200);
  
pinMode(LED1, OUTPUT);    //turn on LED1 as power indicator
digitalWrite(LED1, HIGH);

pinMode(LED2, OUTPUT);
digitalWrite(LED2, LOW);

pinMode(VOICEA, OUTPUT);    //Lows enable distortion gates
digitalWrite(VOICEA, LOW);
pinMode(VOICEB, OUTPUT);
digitalWrite(VOICEB, LOW);
pinMode(VOICEC, OUTPUT);  
digitalWrite(VOICEC, LOW);
pinMode(VOICED, OUTPUT);  
digitalWrite(VOICED, LOW);                               

pinMode(S1, INPUT);  // Set up switch inputs with pullup resistors
digitalWrite(S1, HIGH);
pinMode(S2, INPUT);
digitalWrite(S2, HIGH);
pinMode(S3, INPUT);
digitalWrite(S3, HIGH);
pinMode(S4, INPUT);
digitalWrite(S4, HIGH);
                     
// Serial.begin(115200);   //Used to read loop time    

} //End of Setup

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      MAIN LOOP
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void loop() {

//  deltamicro = micros() - lastmicro;   //Used to read loop time  (44usec with an arduino Mega board ??)
//  lastmicro = micros();                // Loop Frequency = 1/deltamicro  (deltamicro is in microseconds)

// Arduino's tone() function can only be used to set up a squarewave on one output - VoiceA.
// Two more voices are created from a fast loop time decrementing two "freq" values and toggling voice outputs
// when they reach zero.  The "freq" values determine the frequency of the voices.



51

//VoiceA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                                                   
    
       tone(VOICEA, (50 + analogRead(POT5)));  // set frequency of VoiceA using tone, used as modulator
      

  //VoiceB ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

      if (CurrentNoteOn[0] != 0) {
        --freqB;                                         // decrement Voice B freqB counter
        if (freqB <= 0){
            digitalWrite(VOICEB, !digitalRead(VOICEB));  //toggle Voice B pin when counter reaches zero
            freqB = freqTable[CurrentNoteOn[0]];         //reload counter from table
            
      }
        }
      else { digitalWrite(VOICEB, LOW); }  
            
  //VoiceC ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

      if (CurrentNoteOn[1] != 0) {                       // same as above for  Voice C
        --freqC;
        if (freqC <= 0){
            digitalWrite(VOICEC, !digitalRead(VOICEC));
           freqC = freqTable[CurrentNoteOn[1]];
          
      }
        }   
      else { digitalWrite(VOICEC, LOW); }  
 //VoiceD ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

      if (CurrentNoteOn[2] != 0) {                       // same as above for  Voice D
        --freqD;
        if (freqD <= 0){
            digitalWrite(VOICED, !digitalRead(VOICED));
           freqD = freqTable[CurrentNoteOn[2]];
          
      }
        }          
      else { digitalWrite(VOICED, LOW); }  

//--------------------------------------------------------------------------------
//
//---------------Playback of Notes[] at Times []-----------------------------
//

      while (playback) {
       
           currentTime = dur();                    
           while (eventTimes[eventIndex] <= currentTime){ 
                       
           playEvent(eventNotes[eventIndex], eventVelocity[eventIndex], eventVoice[eventIndex]);
           
                        eventIndex = eventIndex + 1;
                        if (eventNotes[eventIndex] == 255){   // no more recorded notes                             



52

                              eventIndex = 0;              // rewind to beginning
                              timestamp();                              
                              break;
                        }  //  end of rewind 
           } // end of while              
                                break;                     
      } //end of while playback

//--------------------------------------------------------------------------------

//--------------switches used to start and stop record or playback -------------

//--------------------------------------------------------------------------------

                  if (digitalRead(S1) && !record) {  //start record                
                      playback = 0;
                      record = 1;
                      digitalWrite(LED2, HIGH);
                      eventIndex = 0;
                                for (int i=0; i < 50; i++){
                                    eventNotes[i] = 255;
                                    eventTimes[i] = 0;
                                }
                       timestamp();
                       
                  }

                   else if (!digitalRead(S1) && record){  //stop record
                      playback = 0;
                      record = 0;
                      digitalWrite(LED2, LOW);  
                  }                  
                  
                  else if (digitalRead(S2) && !playback){  //start playback
                      record = 0;
                      digitalWrite(LED2, HIGH);
                      playback = 1;
                      eventIndex = 0;
                      timestamp();                                                                 
                  }
                                  
                  else if (!digitalRead(S2) && playback){  //stop playback
                      record = 0;
                      digitalWrite(LED2, LOW);
                      playback = 0;
                      CurrentNoteOn[0] = 0;
                      CurrentNoteOn[1] = 0;
                      CurrentNoteOn[2] = 0;
                  }      



53

midiEventPacket_t rx = MidiUSB.read();

  switch (rx.header) {
    
    case 0:
                break; //No pending events
      
    case 0x9:  //NoteOn

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    
   //   Serial.println(deltamicro);  //used to find the loop time in microseconds

   if (rx.byte3 == 0){    //  Note OFF, note velocity of zero.
    
              for (int x = 0; x < 3; x ++){    // search through the 3 Arduino pin voices
                
                    if (CurrentNoteOn[x] == rx.byte2){ // voice playing to turn off?

                                   switch (x) {           
                                   case 0:                   
                                     CurrentNoteOn[x] = 0;
                                     digitalWrite(VOICEB, LOW);
                                     if (record){ loadEventArrays(rx.byte2, rx.byte3, x); }                                                                               
                                     break;                                 
                                  case 1:                    
                                     CurrentNoteOn[x] = 0; 
                                     digitalWrite(VOICEC, LOW);
                                     if (record){ loadEventArrays(rx.byte2, rx.byte3, x); }                                                                                
                                     break;                                 
                                  case 2:                   
                                     CurrentNoteOn[x] = 0; 
                                     digitalWrite(VOICED, LOW);
                                     if (record){ loadEventArrays(rx.byte2, rx.byte3, x); }                                                                                      
                                     break;       
                                   }  // end of switch 
                                                                           
                     }  // end of Note check                                                                                                                     
                     }  // end of for loop                   
   }
   else{    //Note ON,  note velocity not zero
              for (int x = 0; x < 3; x ++){    // search through the 3 Arduino pin voices
                
                    if (CurrentNoteOn[x] == 0){      // this voice is available                                                                          
                            CurrentNoteOn[x] = rx.byte2;  //pitch 
                            if (record){ loadEventArrays(rx.byte2, rx.byte3, x); }                                                                                                                                                              
                            break;  //  break out of voice search loop   
                                                              
                     }  // end of Note On check                                                                                                                                        
                     }  // end of for loop
   }
            break;
  
    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



54

       
    case 0x8: // Note Off

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    for (int x = 0; x < 3; x ++){     // search through the 3 AY voices

    if (CurrentNoteOn[x] == rx.byte2){    // which voice is playing the note to turn off?

                 switch (x) {           
                 case 0:                   
                   CurrentNoteOn[x] = 0;
                    digitalWrite(VOICEB, LOW);  
                   if (record){ loadEventArrays(rx.byte2, 0, 0); }      
                   break;                                 
                case 1:                    
                   CurrentNoteOn[x] = 0; 
                    digitalWrite(VOICEC, LOW);  
                   if (record){ loadEventArrays(rx.byte2, 0, 1); }          
                   break;                                 
                case 2:                   
                   CurrentNoteOn[x] = 0;
                    digitalWrite(VOICED, LOW);  
                   if (record){ loadEventArrays(rx.byte2, 0, 2); }            
                   break;       
                 }  // end of switch 
                                                                           
           }  // end of Note check

     
           }  // end of for loop
                break;
    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~            
                
    case 0xB:  // control Change     
                break;
      
    default:
                 break;
      
  }
  
 
} 
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      END OF MAIN LOOP
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



55

  

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//                      Event Functions
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

void loadEventArrays(int note, int velocity, int voice){
  eventTimes[eventIndex] = dur();
  eventNotes[eventIndex] = note;
  eventVelocity[eventIndex] = velocity;
  eventVoice[eventIndex] = voice;
  eventIndex = eventIndex + 1;
}

void playEvent(int n, int v, int voice){
        switch (voice) {           
                 case 0:                   
                   if (v == 0) {CurrentNoteOn[0] = 0;}
                   else {CurrentNoteOn[0] = n;}             
                   break;                                 
                case 1:
                   if (v == 0) {CurrentNoteOn[1] = 0;}
                   else {CurrentNoteOn[1] = n;}                         
                   break;                                 
                case 2:
                  if (v == 0) {CurrentNoteOn[2] = 0;}
                   else {CurrentNoteOn[2] = n;}                            
                   break;       
                 }  // end of switch 
}

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//              TIMER  Loop Functions
//  ______________________________________________________________________________

void timestamp() {startTime = millis(); };
// store current time from the running clock millis()

unsigned long dur(){
return (millis() - startTime);
}
// returns the current time minus the last store timestamp

void waitTill(unsigned long msec) {
  while (dur() < msec) {};
}
//wait till the time duration from timestamp equals the given time in msec

//  ______________________________________________________________________________

 


