
Sparkfun Codec with ESP32
Thing Plus C

or the "Sparkfun Codec Thing"
John Talbert - February 2023

1

Table of Contents

The Board ..4

Power Connections...6

Interfaces...7

Qwiic / I2C...7

I2S ..7

SPI for the SD Card8

MIDI Input/Output9

LEDs ..9

The WM8960 Codec ..9

Codec Effects Software Package....................13

Short Description13

The Codec Files ..14

The Set_Settings File16

2

External Controllers19

The Controller Module and Task Files21

The Main File ..23

Conclusion ..26

3

The Board

This PCB board connects the Sparkfun Codec module to a Sparkfun ESP32 Thing Plus
C processor module. The Codec module (https://www.sparkfun.com/products/21250)
uses a WM8960 codec by Cirrus Logic (https://datasheetspdf.com/pdf-file/1365067/
CirrusLogic/WM8960/1). The ESP32 Thing Plus (https://www.sparkfun.com/
products/20168) uses a WROOM 32E Processor. Check the Sparkfun website for full
documentation and tutorials.

 The PCB board incorporates a MIDI Input/Output interface and a convenient GPIO
breakout header for connecting external sensors and controllers to available GPIO pins.
A Sparkfun Qwiic connector is available on both the ESP32 module and the Codec
module, and an SD Card Slot is included on the underside of the ESP32 Thing Plus
module.

The PCB board is available from OSHPark circuit board fabricators (https:/
/oshpark.com) under "Shared Projects" by john.talbert@oberlin.edu at a cost of about
$45 for a minimum of 3 boards.

4

https://www.sparkfun.com/products/21250
https://datasheetspdf.com/pdf-file/1365067/CirrusLogic/WM8960/1
https://datasheetspdf.com/pdf-file/1365067/CirrusLogic/WM8960/1
https://www.sparkfun.com/products/20168
https://www.sparkfun.com/products/20168
https://oshpark.com
https://oshpark.com

5

Power Connections
5V power to both modules comes from either the USB-C connector (VUSB) or the Bat-
tery connector (VBAT) on the Thing Plus module. This is variously labeled as VIN,
VUSB, +5V. This 5 volt supply powers a total of four 5v to 3.3v voltage regulators.

1. The main regulator on the ESP32 Thing Plus module supplies 3.3
volts (labeled 3.3V or 3V3) at 700ma to the ThingPlus module. It is
also connected, through the 3V3 pin, to the Codec Module to power
the WM8960's digital circuitry as well as the Qwiic connector on
the Codec Module.

2. A second voltage regulator on the ESP32 Thing Plus supplies 3.3
volts to the Qwiic connector on the Thing Plus module. Of the two
available Qwiic connectors this is the best choice as it has its own
dedicated regulator.

 *** Please do not connect the Thing Plus Qwiic to the Codec Qwiic
when using the OSHPark PCB. Doing so will connect two
regulator outputs together - not a good thing! The Sparkfun Tutorial
Examples make this connection as an easy way to get power to the
Codec module. This connection is unnecessary when using the
OSHPark PCB.

3. A voltage regulator on the Codec Module is used to provide a clean
3.3 voltage source for the Codec's analog audio circuits. It is
labeled AVDD and is also available on a module pin.

4. The PCB board has a AMS1117 regulator to supply 3.3 volts to any
external sensors or controllers. It is also labeled AVDD, not to be
confused with the Codec module's AVDD.

5. The 5v VUSB pin on the Thing Plus module connects to VIN and
SPKVDD pins on the Codec module. VIN goes to the Codec
module regulator that creates AVDD. SPKVDD goes to the
WM8960 codec to power the speaker outputs on the chip.

 SPKVDD is connected to VIN both on the PCB board and with a
jumper on the Codec module. Both must be cut if you want to
power the Codec Speaker amps from another source.

6

Interfaces

Qwiic / I2C
Qwiic is a connection system by Sparkfun for I2C interface devices. The standard 4-
pin connector carries 3.3v, GND, SDA and SCL. The ESP32 Thing and the Codec
module both have a Qwiic connector. The ESP32 Thing Qwiic connector has its own
dedicated 3.3v voltage regulator while the Codec board's Qwiic connector makes use
of the same 3.3v that powers both boards. Because of this arrangement, the Qwiic
connector on the ESP32 Thing would be the preferred one to use.

Please note that the sample code examples from the Sparkfun Codec tutorials suggest
connecting the ESP32 Qwiic to the Codec Qwiic for an easy power connection
between the two boards. This is unnecessary when using the OSHPark PCB shown
here and may even damage the board voltage regulators.

I2C is a 2-Wire serial communication interface with SDA carrying the data, and SCL
carrying the data clock. The same two lines can service multiple devices as long as
each device has its own unique address (https://learn.adafruit.com/i2c-addresses). Note
that the WM8960 codec already makes use of this I2C interface for loading its setup
registers. I2C is enabled from the "Arduino Wire Library" (https://docs.arduino.cc/
learn/communication/wire).

A 14-pin header for external device connections on the OSHPark PCB includes SDA
and SCL. Another 4-pin header provides power for external devices with a 3.3v
source derived from a dedicated voltage regulator. External I2C devices can use these
header connections as an alternative to the Qwiic connection.

I2S
Along with the I2C (Qwiic) interface the Sparkfun Thing Plus also has an I2S interface
used by the Codec to move audio data between the ADCs and DACs.

The ESP32 microprocessor integrates the I2S interface with DMA (Direct Memory
Access). Audio data movement from the ADCs to DMA memory blocks and from
DMA memory blocks to the DACs at a specified sample rate can happen directly with
little involvement from the ESP32 processor. While that automated audio data
movement is happening, the program code can employ two specialized I2S functions
to keep the DMA buffers filled, i2s_read() and i2s_write(). The I2S interface
requires 4 to 5 ESP32 pins:

7

https://learn.adafruit.com/i2c-addresses
https://docs.arduino.cc/learn/communication/wire
https://docs.arduino.cc/learn/communication/wire

//ESP32-Codec PIN SETUP

//#define IS2_MCLK_PIN 0

#define I2S_NUM 0
#define I2S_BCLK 4 //BCLK, SCK, SCLK
#define I2S_LRC 25 //LRC, WS, ADCLRC, DACLRC, LRCLK -- Left/Right channel
#define I2S_DIN 35 //DIN, ADCDAT, SD -- data into ESP32 from ADC output
#define I2S_DOUT 26 //DOUT, DACDAT, SDO -- data out of ESP32 to DAC input

The above code lines were taken from the Codec Software Package file set_settings.h
The pin label names are not completely standardized so that different manufacturers
will use different pin designations. I have included some of them in the code
comments. For DIN and DOUT it is important to realize that these designations are
from the ESP32 perspective (not the Codec). It's audio data samples into (DIN) the
ESP32 from the codec ADCs, and data out (DOUT) from the ESP32 to the codec
DACs.

BCLK is the data clock, similar in function to the I2C SCL. LRC is another clock
that indicates which audio channel, left or right, is presenting its data. Most any
ESP32 pin can be used for each I2S function with some restrictions; for example, pin
35 is input only and thus is assigned to DIN (it won't work for DOUT).

MCLK is an I2S master clock usually associated with pin zero; however, the Sparkfun
Codec uses a 24 MHz hardware clock instead. NUM is not a GPIO pin number, it is
the I2S port number 0 or 1, usually set to zero.

SPI for the SD Card
A micro SD Card Slot is mounted on the underside of the ESP32 Thing Plus module di-
rectly beneath the USB connector. It uses an SPI interface with the following pins:

//SD Card Reader Settings

#define SD_CARD_CS 5
#define SD_CARD_MISO 19
#define SD_CARD_MOSI 23
#define SD_CARD_CLK 18

Read the PDF documentation for the LillyGo TAudio board at jtalbert.xyz/ESP32/ for
a description of the sd_play Class Software files created to play back WAV audio files
from a micro SD Card. For clues on how to set up the codec for this application read
Example 9: I2S Bluetooth from the Sparkfun Codec Hookup Guide (https:/
/learn.sparkfun.com/tutorials/audio-codec-breakout---wm8960-hookup-guide/all). For
this application, codec Inputs from the ADCs must be disabled and only the DACs
enabled.

8

http://jtalbert.xyz/ESP32/
https://learn.sparkfun.com/tutorials/audio-codec-breakout---wm8960-hookup-guide/all
https://learn.sparkfun.com/tutorials/audio-codec-breakout---wm8960-hookup-guide/all

MIDI Input/Output
A MIDI Interface is provided on the PCB. It uses pins TX2 (IO17) and RX2 (IO16) for
MIDI Input and MIDI Output. A 6N137 opto-isolator chip is used in the MIDI IN
circuit. A 4-pin header provides connections to standard 5-pin DIN MIDI Output and
MIDI Input jacks.

Read the PDF documentation "ESP32_Codec" at jtalbert.xyz/ESP32/ for example code
using the MIDI interface.

LEDs
The Sparkfun ESP32 Thing Plus module has a mounted Blue LED on GPIO pin 13. It
also has one RGB WS2812 NeoPixel on GPIO pin 02. Read the PDF documentation
for the LillyGo TAudio board at jtalbert.xyz/ESP32/ for a description of the code and
library required for dealing with WS2812 NeoPixels.

The WM8960 Codec
The SparkFun Audio Codec Breakout - WM8960 is a low power, high quality
stereo codec with 1W Stereo Class D speaker drivers and headphone drivers.
The WM8960 acts as a stereo audio ADC and DAC, and communicates using I2S,
a standard audio data protocol (not to be confused with I2C). This audio
codec is chock full of features some of which includes advanced on-chip
digital signal processing for automatic level control (ALC) for the line or
microphone input, programmable gain amplifier (PGA), pop and click
suppression, and its ability to configure I2S settings and analog audio
path through software via I2C.

The above description is from the Sparkfun product page which also includes a link to
a GitHub Arduino Library for the WM8960 (https://github.com/sparkfun/
SparkFun_WM8960_Arduino_Library).

To understand what is going on in the WM8960 codec library you must reference the
Wm8960 datasheet at https://datasheetspdf.com/pdf-file/1365067/CirrusLogic/
WM8960/1 The codec has a total of 56 9-bit registers, all described in detail in the
WM8960 datasheet. These registers are used to set up its numerous modes of
operation. They are loaded from the ESP32 using I2C interface commands defined in
the codec.h codec library file.

9

http://jtalbert.xyz/ESP32/
http://jtalbert.xyz/ESP32/
https://www.sparkfun.com/products/21250
https://github.com/sparkfun/SparkFun_WM8960_Arduino_Library
https://github.com/sparkfun/SparkFun_WM8960_Arduino_Library
https://datasheetspdf.com/pdf-file/1365067/CirrusLogic/WM8960/1
https://datasheetspdf.com/pdf-file/1365067/CirrusLogic/WM8960/1

The Sparkfun codec library includes many simple functions (methods) to aid in setting
up the codec and in making changes in real time; changes such as DAC output volume,
muting, bypass, etc. Many of the register set functions are self-explanatory -
enableAdcLeft(), disableAdcRight(), enableDacMute(), disableDacMute(),
enableNoiseGate(), setLeftAdcDigitalVolume(). Others such as connectLMN1() will
need some explanation, much of which you can get from the datasheet block diagrams
shown here:

10

11

12

The Sparkfun Codec Hookup Guide has 15 Example setups for the WM8960 Codec
with code that includes the register set functions necessary for each setup.

Codec Effects Software Package

Short Description

My Codec Effects Software Package was first introduced with the "ESP32 ES8388
Codec" PCB project on my website at https://www.jtalbert.xyz/ESP32/. A full
description and tutorial is presented there in the PDF document "Codec Software".
Since then it has been expanded and successfully applied to a number of ESP32 Codec
boards including the LyratT, A1S Audio Kit, PUCA DSP board, and LillyGo TAudio,
and finally this PCB for the Sparkfun modules, all fully documented with PDFs and
software downloads.

The main project goal was to create an audio effects software package for most any
audio codec ESP32 board, with full documentation and tutorials, that is easier to use
and understand than the usual ADF/IDF libraries. The Software Package tweaked for
this Sparkfun Codec Thing PCB is available for download along with this PDF.

Coding was done on the PlatformIO IDE with an Arduino Framework, all from
Visual Studio Code (VSC). As such, with a few modification, it could be run from
the Arduino IDE. Here is the platform.io file for the project.

[env:sparkfun_esp32s2_thing_plus_c]
platform = espressif32
board = sparkfun_esp32s2_thing_plus_c
framework = arduino
monitor_speed = 115200
lib_deps =
adafruit/Adafruit NeoPixel@^1.10.7
SPI
Wire
SD
sparkfun/SparkFun WM8960 Arduino Library@^1.0.3

Most of the package files are written as .h/.cpp file pairs (header/code files) with c++
OOP Class structures. The full capabilities of the ESP32 are utilized, special features
such as dual core processing, FreeRTOS, Floating Point Unit (FPU) calculations, I2C,
SPI, and Direct Memory Access (DMA) integrated with the I2S interface to access the
Codec ADCs and DACs.

Below is a short description of the files that make up this Codec Effects Software

13

https://www.jtalbert.xyz/ESP32/

Package.

1. codec -- The driver for a specific codec, the WM8960 in this case.

2. controller_mod -- A base class container for analog and
digital controllers such as switches and potentiometers.

3. task -- Task functions for polling the analog and digital controllers.
Task functions for System Monitoring. Task functions for special
devices such as NeoPixels. A setup function to place and start up
the tasks using freeRTOS.

4. bsdsp -- Digital Signal Processing (DSP) class tools for the audio
effects.

5. sd_play -- Class tools for playing audio WAV files from an SD Card.

5. set_settings, set_codec, set_module -- Overall settings for the
various package components.

6. main -- The main entry file that pulls it all together. Effect
Processing on the audio samples.

The Codec Files

The Package codec.h and codec.cpp files are direct copies of the SparkFun WM8960
Arduino Library found at the GitHub repository https://github.com/sparkfun/
SparkFun_WM8960_Arduino_Library. Many thanks to the good people at Sparkfun,
especially Pete Lewis and Mike Grusin, for their great work.

The Library includes 15 Example Arduino sketches for different Codec setups. These
are especially useful for including the codec register set functions necessary for each
particular setup. For the demostration code presented here I needed a Codec setup that
uses both ADC audio inputs and DAC outputs. Example 8 - I2S Passthrough was
perfect for my application. It includes a codec_setup() function with all the necessary
codec register set functions. I simply copied them to my own codec_sets() function in
the package file set_codec.cpp as shown below:

#include "set_codec.h"

// declaration of codec, an instance of WM8960
 WM8960 codec;

14

https://github.com/sparkfun/SparkFun_WM8960_Arduino_Library
https://github.com/sparkfun/SparkFun_WM8960_Arduino_Library

 void codec_sets() //to be executed in main.cpp
 {
 //Example_08 I2S passthrough
 // General setup needed
 codec.enableVREF();
 codec.enableVMID();

 // Setup signal flow to the ADC

 codec.enableLMIC();
 codec.enableRMIC();

 // Connect from INPUT1 to "n" (aka inverting) inputs of PGAs.
 codec.connectLMN1();
 codec.connectRMN1();

 // Disable mutes on PGA inputs (aka INTPUT1)
 codec.disableLINMUTE();
 codec.disableRINMUTE();

 // Set pga volumes
 codec.setLINVOLDB(0.00); //Valid options -17.25dB to +30dB (0.75dB steps)
 codec.setRINVOLDB(0.00); //Valid options -17.25dB to +30dB (0.75dB steps)

 // Set input boosts to get inputs 1 to the boost mixers
 codec.setLMICBOOST(WM8960_MIC_BOOST_GAIN_0DB);
 codec.setRMICBOOST(WM8960_MIC_BOOST_GAIN_0DB);

 // Connect from MIC inputs (aka pga output) to boost mixers
 codec.connectLMIC2B();
 codec.connectRMIC2B();

 // Enable boost mixers
 codec.enableAINL();
 codec.enableAINR();

 // Disconnect LB2LO (booster to output mixer (analog bypass)
 // For this example, we are going to pass audio throught the ADC and DAC
 codec.disableLB2LO();
 codec.disableRB2RO();

 // Connect from DAC outputs to output mixer
 codec.enableLD2LO();
 codec.enableRD2RO();

 // Set gainstage between booster mixer and output mixer
 // For this loopback example, keep these as low as they go
 codec.setLB2LOVOL(WM8960_OUTPUT_MIXER_GAIN_NEG_21DB);
 codec.setRB2ROVOL(WM8960_OUTPUT_MIXER_GAIN_NEG_21DB);

 // Enable output mixers
 codec.enableLOMIX();
 codec.enableROMIX();

 // CLOCK STUFF, settings for 44.1KHz sample rate, and class-d
 // freq at 705.6kHz
 codec.enablePLL(); // Needed for class-d amp clock
 codec.setPLLPRESCALE(WM8960_PLLPRESCALE_DIV_2);
 codec.setSMD(WM8960_PLL_MODE_FRACTIONAL);

15

 codec.setCLKSEL(WM8960_CLKSEL_PLL);
 codec.setSYSCLKDIV(WM8960_SYSCLK_DIV_BY_2);
 codec.setBCLKDIV(4);
 codec.setDCLKDIV(WM8960_DCLKDIV_16);
 codec.setPLLN(7);
 codec.setPLLK(0x86, 0xC2, 0x26); // PLLK=86C226h
 //codec.setADCDIV(0); // Default is 000 (what we need for 44.1KHz)
 //codec.setDACDIV(0); // Default is 000 (what we need for 44.1KHz)
 codec.setWL(WM8960_WL_16BIT);

 codec.enablePeripheralMode();
 //codec.enableMasterMode();
 //codec.setALRCGPIO(); // Should not be changed while ADC is enabled.

 // Enable ADCs and DACs
 codec.enableAdcLeft();
 codec.enableAdcRight();
 codec.enableDacLeft();
 codec.enableDacRight();
 codec.disableDacMute();

 //codec.enableLoopBack(); // Loopback sends ADC data directly into DAC
 codec.disableLoopBack();

 // Default is "soft mute" on, must disable mute to make channels active
 codec.disableDacMute();

 codec.enableHeadphones();
 codec.enableOUT3MIX(); // Provides VMID as buffer for headphone ground

 Serial.println("Volume set to +0dB");
 codec.setHeadphoneVolumeDB(0.00);

 Serial.println("Codec Setup complete. Listen to left/right INPUT1 on
Headphone outputs.");

 };

The above file first declares an instance object of the WM8960 class found in codec.h
and codec.cpp, calling it "codec". Now the "codec" object can access all the
WM9060 Class register set methods declared in codec.h and defined in codec.cpp
using the simple dot operator, codec.disableDacMute() for example. This
codec_sets() method is then executed at the start of main.cpp in its setup() section to
initialize the codec operation mode to enable ADC inputs and DAC outputs at a 44,100
Hz sample rate.

The Set_Settings File

The set_settings.h file is where all the important program settings are set and labeled

16

such as sample-rate, bits-per-sample, number of audio channels, ESP32 pin numbers for
all the physical pot and switch connections, ESP32 pin numbers for the i2c interface and
the i2s codec interface, audio processing settings for DMA size and Framesize.

set_settings.h also declares the I2S_init() function. If you remember, I2S is the codec
interface used to move the audio data into and out of the codec. This function is defined
in detail in set_settings.cpp and executed in the setup() of main.cpp. It is the same
I2S initialization function found the Example 08 sketch. Many of the settings in
I2S_init() use labels defined in set_settings.h so that any needed changes can be
applied to the labels while avoiding having to get inside I2S_init().

Here is the set_settings.h file specific to the Sparkfun Codec Thing PCB board
including any possible external pots, pushbuttons and LEDs :

#ifndef SETTINGS_H_
#define SETTINGS_H_

 #pragma once
 #include "codec.h"
 #include <Arduino.h>
 #include "driver/i2s.h"

 #define SAMPLE_RATE (44100)
 #define BITS_PER_SAMPLE (16)
 #define CHANNEL_COUNT 2

 //Sparkfun Codec/ESP32 Thing Plus C PIN ASSIGNMENTS
 //~~~~~~~~~~~~~~~~~~~~~~~~~~~

 #define POT1 14
 #define POT2 32
 #define POT3 39
 #define POT4 36
 #define POT5 33
 #define POT6 34

 #define LED1 13 //onboard Blue LED, ESP32 Sparkfun Thing Plus
 #define LED2 12

 #define KEY1 15
 #define KEY2 27

//ESP32-Codec PIN SETUP
#define I2S_NUM (0)
//#define IS2_MCLK_PIN (0)//onboard Osc Chip, MCLK of 24MHz
#define I2S_BCLK (4) //BCLK, SCK, SCLK
#define I2S_LRC (25) //LRC, WS, ADCLRC, DACLRC, LRCLK -- Left/Right Chnl
#define I2S_DIN (35) //DIN, ADCDAT, SD -- data into ESP32 from ADC output
#define I2S_DOUT (26) //DOUT, DACDAT, SDO -- data out of ESP32 to DAC
input

// I2C address (7-bit format for Wire library)

17

//#define WM8960_ADDR 0x1A //left on codec.h
// I2C on Qwiic Connector
#define Codec_SDA 21
#define Codec_SCK 22
#define I2C_MASTER_SCL_IO 22
#define I2C_MASTER_SDA_IO 21
#define I2C_SDA 21
#define I2C_SCL 22

#define I2C_MASTER_NUM 1 //I2C port number for master dev
#define I2C_MASTER_FREQ_HZ 100000
#define I2C_MASTER_TX_BUF_DISABLE 0
#define I2C_MASTER_RX_BUF_DISABLE 0

//SD Card Reader Settings

#define SD_CARD_CS 5
#define SD_CARD_MISO 19
#define SD_CARD_MOSI 23
#define SD_CARD_CLK 18

#define SAMPLES_BUFFER_SIZE 1024

//NEO PIXEL SETTINGS
#define PIN 2 //Built in RGB on ESP32 Thing Plus
#define NUM_LEDS 1
#define BRIGHTNESS 5

//audio processing frame length in samples (L+R) 64 samples (32R+32L) 256
Bytes
//Used as size of i2s input and output buffers
#define FRAMELENGTH 256
//audio processing priority
#define AUDIO_PROCESS_PRIORITY 10

//SRAM used for DMA = DMABUFFERLENGTH * DMABUFFERCOUNT * BITS_PER_SAMPLE/8
* CHANNEL_COUNT
//Lower number for low latency, Higher number for more signal processing
time
//Must be value between 8 and 1024 in bytes
#define DMABUFFERLENGTH 128

//number of above DMA Buffers of DMABUFFERLENGTH
#define DMABUFFERCOUNT 8

 // processor timing variables for system monitor, also included in
task.cpp
 extern unsigned int runningTicks;
 extern unsigned int usedticks;
 extern unsigned int availableticks;
 extern unsigned int availableticks_start;
 extern unsigned int availableticks_end;
 extern unsigned int usedticks_start;
 extern unsigned int usedticks_end;
 extern unsigned int processedframe;
 extern unsigned int audiofps;

 void I2S_init(void);

#endif

18

External Controllers

Many of the ESP32 Thing GPIO pins are assigned to specific tasks such as the I2C and
I2S interfaces for the Codec and Qwiic, the SPI interface for the SD card, the MIDI
serial interface, and a couple LEDS.

Believe it or not, there are pins left over and available for other tasks such as external
controllers. These available GPIO pins are brought out to a 14-pin header for
connecting to external controllers such as potentiometers and switches. Examples of
controller circuits for these GPIO pins is shown in the figure below. The 470Ω resistors
in series with the GPIO pins on the pot and pushbutton circuits are included as a safety
feature preventing possible short circuits if the pins are mistakingly defined as outputs.
For the LEDs, the 470Ω resistor sets the LED brightness. An example circuit for a
cadmium cell light sensor was also included in the figure.

There are 14 "R" pads on the OSHPark PCB board for mounting 470Ω resistors for
whatever controller circuits are needed. In effect, the 470Ω resistors will make the
connection between a GPIO pin and an off-board pot, switch, or LED. In the case of
the light sensor, a jumper wire on the "R" pad will suffice.

Note that the potentiometers can be any value between about 5k and 100k but must be
linear taper.

19

10k
linear

470Ω

3.3v

100k
linear

470Ω

3.3v

100k
linear

470Ω

3.3v

10k
linear

470Ω

3.3v

internal
pullup470Ω

470Ω

10k to 1M
0.3v to 3.0v
Light Sensor

100k

3.3v

470Ω

POT1 - 32

POT2 - 34

POT3 - 35

POT4 - 33

KEY1 GPIO 14

GPIO 04 GPIO 02

ESP32 / PUCA
Sensor — Controller Circuits

John Talbert 2023

KEY2 GPIO 13

KEY3 GPIO 15

KEY4 GPIO 21

Example
470Ω’s for pots and switches are for safety,

in case pin is defined as an output

20

The Controller Module and Task Files

The controller_mod.h and .cpp file pair builds a base class, called controllerModule,
that will define the basic data structures for all connected potentiometers, switches, and
other sensors used to control the parameters of an audio effects program. Two arrays are
created as class attribute members, one for up to 6 potentiometers or other analog
sensors called control[], and another one for up to 6 switches or other digital sensors
called button[]. Each array element, in turn, has several properties such as name, GPIO
pin, mode of operation, and value.

The task.cpp file creates a task function for the button[] array elements and one for the
control[] array elements. These tasks will continuously poll all the physical controllers
attached to the ESP32. Using the array element pin parameter, the buttontask() will
perform a digitalRead(pin) and the controltask() will perform an analogRead(pin).
The data is then manipulated according to the controller's mode parameter and the result
stored in the value parameter. This is done for each enabled button and control, and then
repeated in an infinite loop.

The code in the controller_mod and task files described above is set and generally
will not need any alterations. It's in the set_module files that all the controller details
are worked out in a child class of controllerModule called controller_module.

#include "set_module.h"
#include "set_settings.h"
#include "set_codec.h"

//controller_module myPedal definition
controller_module *myPedal = new controller_module();

//~~~
//~~~~~ CONTROLLER MODULE CLASS DEFINITIONS ~~~
//~~~

void controller_module::init() //effect module class initialization
 {
 name = "SparkfunGain";

 // Set up pin Modes for the switches and LEDs
 // Some need pullup resistor.
 pinMode(KEY1, INPUT_PULLUP);
 pinMode(LED1, OUTPUT);

 //setting up the buttons
 button[0].name = "Mute";
 button[0].mode = BM_TOGGLE;
 button[0].touch = false;
 button[0].pin = KEY1; //label from set_settings.h

//add gain control
 control[0].name = "Gain";

21

 control[0].mode = CM_POT;
 control[0].levelCount = 128;
 control[0].pin = POT1; //label from set_settings.h

 // special child class attributes
 gain = 1.0;
 gainRange = 2.0;
 mute = false;
 }
//~~~
void controller_module::onButtonChange(int buttonIndex)
{
 switch(buttonIndex)
 {
 case 0: //pushbutton button[0] state has changed
 {
 if(button[0].value) //if effect is activated
 {
 codec.disableDacMute();
 digitalWrite(LED1, HIGH);
 mute = true;
 }
 else //if effect is bypassed
 {
 codec.enableDacMute();
 digitalWrite(LED1, LOW);
 mute = false;
 }
 break;
 }

 }
}
//~~~
void controller_module::onControlChange(int controlIndex)
{
 switch(controlIndex)
 {
 case 0: // potentiometer control[0] has changed
 {
 gain = (float)control[0].value/127.0;
 break;
 }
 }
}

In this simple effects demonstration three external controllers are needed - one
pushbutton, one potentiometer and one LED. Most of the setup for these three devices
happens in the init() method shown above. First, the pushbutton and LED GPIO pins
are set up with the usual pinMode() function. Next the parameters of the pushbutton
are defined in button[0] and the parameters of the pot are defined in control[0].

The control and button tasks in the file task.cpp will use these parameters to
continuously poll and store the pushbutton and pot values, waiting for any changes.
When a change happens the tasks will call the methods onButtonChange() or
onControlChange() which are defined next in init().

22

The pushbutton's onButtonChange() method will act as an audio mute control
directly calling the codec.h register set methods enableDacMute() and
disableDacMute() with the LED acting as a mute indicator lamp.

The potentiometer's onControlChange() method will take the collected pot value and
turn it into a floating point "gain" variable that varies between zero and one.

This controller init() method will be engaged in main.cpp with myPedal->init()
immediately before the task functions are set in motion with taskSetup().

The Main File

#include <Arduino.h>
#include "set_settings.h"
#include "set_module.h"
#include "set_codec.h"
#include "task.h"
#include <SD.h>
#include "sd_play.h"

//~~~
//~~~~~~~~~~~~~~~SETUP~~~~~~~~~~~~~~~~~~~~~~~~~
//~~~

void setup()
{
 Serial.begin(115200);
 while(!Serial);
 delay(3000);

 //~~~~~~~~~~~codec is initialized See Codec.cpp~~~~~~~~~~~~~~~~~
 //~~~~i2c is initialized within codec.init() with initI2C()~~~~~~

 Wire.begin();
 Serial.println("Initialize Codec Codec ");
 codec.begin();
 codec_sets();
 Serial.println("Codec Init success!!");

 //~~~~~~I2S See set_settings.cpp for I2S ~~~~~~~~~~~~~~~

 I2S_init();

 //~~~~~~~~~~~~~~Monitor (can be commented out)~~~~~~~~~~

 Serial.println("I2S/SD setup complete");
 runSystemMonitor(); //for testing only

} //Setup End

23

//~~~
//~~~~~~~~~~~~~~~MAIN LOOP~~~~~~~~~~~~~~~~~~~~~
//~~~

void loop()
{
 size_t readsize = 0;
 int16_t rxbuf[FRAMELENGTH], txbuf[FRAMELENGTH];
 float rxl, rxr, txl, txr;

 myPedal->init();
 taskSetup();

 while(1){ //signal processing loop

/*
Read 256 samples = FRAMELENGTH (128 Left+Right signed samples). It's also
the size of buffers. Read 2 bytes for each 16 bit (2 byte)
sample(FRAMLENGTH*2.

rxbuf[] and txbuf[] defined with signed 16 bit integers (int16_t) and of
FRAMELENGTH size.
*/

 //gather some input samples into receive buffer from the DMA memory

 i2s_read(I2S_NUM_0, rxbuf, FRAMELENGTH*2, &readsize, 20);

 for (int i=0; i<(FRAMELENGTH); i+=2) { //process samples one at a time

 rxl = (float) (rxbuf[i]) ; //convert sample to float
 rxr = (float) (rxbuf[i+1]) ;

 txl = myPedal->gain * myPedal->gainRange * rxl;
 txr = myPedal->gain * myPedal->gainRange * rxr;

 txbuf[i] = ((int16_t) txl) ; //convert sample back to integer
 txbuf[i+1] = ((int16_t) txr) ;
 }

 // play processed buffer by loading transmit buffer into DMA memory

 i2s_write(I2S_NUM_0, txbuf, FRAMELENGTH*2, &readsize, 20);

} // End of while(1) loop
} // End of Main Loop

24

The file main.cpp is the official program entry point. Here is a list of all its startup
functions and from what files they originate.

Serial.begin(115200); Arduino Library Serial Monitor
Wire.begin(); Wire Library start I2C 2-Wire
codec.begin(); codec.cpp connect the I2C port
codec_sets(); set_codec.cpp set codec registers
I2S_init(); set_settings.cpp start I2S interface
runSystemMonitor(); task.cpp print to screen controller values
myPedal->init(); set_module.cpp set up controllers
taskSetup(); task.cpp start up controller polling

After all the startup functions are initiated, an inner while(1) loop is entered. This
infinite loop contains the code for digital signal processing on the audio samples. It
starts off collecting a batch (frame) of audio signal samples from the DMA memory
buffers holding data from the ADC converters, using the function i2s_read(). These
samples are then converted to floating point and processed one sample at a time. The
frame of processed samples are then converted back to 16-bit integers and sent out to
the DMA buffers serving the DAC converters, using the function i2s_write().

The only two lines that you really need to be concerned with are these:

txl = myPedal->gain * myPedal->gainRange * rxl;
 txr = myPedal->gain * myPedal->gainRange * rxr;

This is the code that performs digital signal processing on the left and right channel
audio samples. In this case the audio effect is simple amplitude control. The left and
right samples are multiplied by both the 0 to 1 gain variable and the gainRange
variable set up in the file set_module.cpp. If you remember, the gain value originates
from an external potentiometer.

This is a rather trivial example and one that might be more easily accomplished by
using a codec register set function such as setDacLeftDigitalVolume(uint8_t volume)
inside the set_module.cpp file's init() method, as done with the pushbutton mute
control.

More importantly though, it is a simple demonstration of how to set up any effects
processing on the samples of an audio signal. The bulk of the main.cpp file shown
above can be left as is. Only the above two DSP code lines need to be changed to
create a multitude of different effects. This is where the bsdsp file DSP tools will
become indispensible.

For an example stereo chorus effect using the bsdsp delay and oscillator class tools,

25

read the documentation for some of the other codec boards on the https://jtalbert.xyz/
ESP32/ site.

The audio sample processing lines for the stereo chorus effect look like this:

 //~~~
 //~~~~~~~~~stereoChorus Processing~~~~~~~~~~~~~
 //~~~
 delay1.write(rxl);
 delay2.write(rxr); //write anyway, no matter it's stereo or mono input

 lfo1.update();
 lfo2.update();

 float dt1 = (1 + lfo1.getOutput())* myPedal->depth;
 float dt2;

 if(myPedal->asynch == 0) //asynchronous
 dt2 = (1 + lfo2.getOutput())* myPedal->depth;
 else //synchronous
 dt2 = (1 + lfo1.getOutput(myPedal->phaseDiff))* myPedal->depth;

 txl = (0.7 * rxl) + (0.7 * delay1.read(dt1));

 if(myPedal->stereo) //if stereo input
 txr = (0.7 * rxr) + (0.7 * delay2.read(dt2));
 else //if mono
 txr = (0.7 * rxl) + (0.7 * delay1.read(dt2));
 //~~~

These lines take the place of the two amplitude control lines in our simple
demonstration above. delay1, delay2, lfo1, and lfo2 are instance objects of the delay
class and oscillator class defined in the file bsdsp.cpp. These class objects along with
the variables dt1, dt2, depth, phaseDiff, stereo, and asynch are all set up in the file
set_module.cpp within the init() method. For more details and a look at the stereo
chorus set_module.cpp, read the PDF documents for the other codec boards.

Conclusion

For any new audio effect or different codec application the code must be rewritten in
some of the software package files and left alone in others. This Codec Effects
Software Package was designed to narrow down and clarify where those changes
need to happen. Basically the coder only needs to examine four short files:
set_settings, set_codec, set_module, and main.cpp (the "set" files are .h/.cpp pairs).

Each of these files was examined for the above simple amplitude control effect. For
more details and tutorials please read the other codec PDF documents on the website.

26

https://jtalbert.xyz/ESP32/
https://jtalbert.xyz/ESP32/

27

