
PUCA DSP Effects Software

John Talbert - January 2023

1

Table of Contents

Acknowledgements ..4

Codec Effects Software......................................4

The PÚCA DSP ..5

PÚCA Controller Hardware6

Controller Circuits...6

Board Mounting ..8

Reset and Boot Problems ..9

PÚCA Software Package..................................10

The Codec Files ..11

The Controller_Mod Files ...13

The Task Files..13

The DSP Files ..14

The Set_Codec Files ...14

The Set_Settings Files ..15

2

Effects Programming..17

The Set_Module Files for gainDoubler17

Set Module Header..17
Set Module CPP...18
Set Module Init()..18
Set Module Event Handlers19

The Main.cpp File for gainDoubler21

Includes ..21
Setup()..21
Loop() ...22

The Set Module Files for Chorus.................................24

Set Module Header..24
Set Module CPP...24
Set Module Init()..25
Set Module Event Handlers26

The Main.cpp File for the Chorus Effect27

3

Acknowledgements
Many thanks to Hasan Murod who created the original software package upon which
this project is based. It was written for the Blackstomp Effect Pedal project (https:/
/www.deeptronic.com/blackstomp/) which is a quick development platform for an
ESP32 based audio effects module. The original software package can be found at
https://github.com/hamuro80/blackstomp

Thanks to Andy Wilson (andy-wi) and David Swarbrick for their PÚCA DSP
development work on the GitHub https://github.com/ohmic-net/puca_dsp. Thanks to
the NuovotonDuino project: https://github.com/DFRobot/NuvotonDuino on which the
I2C Configuration for a Wolfson Codec Audio Codec was based.

Codec Effects Software

What is offered here is a complete Effects Programming Software package for the
PÚCA DSP audio development board. It is basically the same software package found
on my https://www.jtalbert.xyz/ESP32/ website with only a few changes specific to the
board. Please read the tutorial PDF "Codec Software" for a complete, more detailed
description of the codec effects software package and the two Effects examples used
here.

The code was written on the PlatformIO IDE with an Arduino Framework, all from
Visual Studio Code (VSC) as shown in the platformio.ini file:

[env:tinypico]
platform = espressif32@5.2.0
board = tinypico
framework = arduino

; set cpu frequency - 80, 160 or 240MHz
board_build.f_cpu = 240000000L

; Serial Monitor options
monitor_speed = 115200

;upload_port = /dev/tty*

board_build.partitions = default.csv

build_flags =
 -DBOARD_HAS_PSRAM

4

https://www.deeptronic.com/blackstomp/
https://www.deeptronic.com/blackstomp/
https://github.com/hamuro80/blackstomp
https://github.com/ohmic-net/puca_dsp
https://github.com/DFRobot/NuvotonDuino
https://www.jtalbert.xyz/ESP32/

 -mfix-esp32-psram-cache-issue
 -DCORE_DEBUG_LEVEL=5
 ;-Wl,-Map,output.map

This board uses the WM8978 Codec. My projects up to now have been for the
ES8388 codec so the codec files -- codec.h, codec.cpp, set_codec.h, and
set_codec.cpp will need to be changed to support this new codec. The codec driver
was readily available from the PÚCA GitHub.

The PÚCA DSP
PÚCA DSP is an open-source, Arduino-compatible ESP32 development board for audio
and digital signal processing (DSP) applications, available from https:/
/www.crowdsupply.com/ohmic/puca-dsp. It offers an expansive audio-processing feature
set on a small-format, breadboard-friendly device that provides audio inputs, audio
outputs, a low-noise microphone array, an integrated test-speaker option, additional
memory, battery-charge management, and ESD protection all on one tiny PCB.

Here is a list of its features as provided on the website:

Processor & Memory
• Espressif ESP32 PICO D4 processor
• 32-bit dual-core 80 MHz / 160 MHz / 240 MHz
• Choice of either 4 MB SPI Flash

 • 8 MB additional PSRAM or 16 MB External SPI Flash
• 2.4 GHz Wi-Fi 802.11 b/g/n
• Bluetooth BLE 4.2
• 3D antenna

Audio
• Wolfson WM8978 Stereo Audio Codec
• Audio Line In on a stereo 3.5 mm connector
• Audio Headphone / Line Out on stereo 3.5 mm connector
• Stereo Aux Line In, Audio Mono Out routed to GPIO Header
• 2 x Knowles SPM0687LR5H-1 MEMS microphones
• ESD protection on all audio inputs and outputs
• 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48 kHz sample rates
• 1 W Speaker Driver routed to GPIO Header

5

https://www.crowdsupply.com/ohmic/puca-dsp
https://www.crowdsupply.com/ohmic/puca-dsp

PÚCA Controller Hardware

The circuit board has a 16 pin header with 11 ESP32 pins available for controllers.
There is also an on-board pushbutton connected to GPIO36. A four pin header carries
power lines and the Reset pin.

Controller Circuits

In this project 4 of the pins are used for potentiometers, 4 for pushbutton switches, and
2 for LEDs. The circuit wiring for these controllers is shown in the figure below. The
series 470Ω resistors in the pot and pushbutton circuits are included as a safety feature
preventing possible short circuits if the pins are mistakingly defined as outputs. For the
2 LEDs, the 470Ω resistor sets the LED brightness. An example circuit for a cadmium
cell light sensor was included in the figure, but not implemented.

Note that the potentiometers can be any value between about 5k and 100k but must be
linear taper.

6

10k
linear

470Ω

3.3v

100k
linear

470Ω

3.3v

100k
linear

470Ω

3.3v

10k
linear

470Ω

3.3v

internal
pullup470Ω

470Ω

10k to 1M
0.3v to 3.0v
Light Sensor

100k

3.3v

470Ω

POT1 - 32

POT2 - 34

POT3 - 35

POT4 - 33

KEY1 GPIO 14

GPIO 04 GPIO 02

ESP32 / PUCA
Sensor — Controller Circuits

John Talbert 2023

KEY2 GPIO 13

KEY3 GPIO 15

KEY4 GPIO 21

Example
470Ω’s for pots and switches are for safety,

in case pin is defined as an output

7

Board Mounting

The PÚCA circuit board has no mounting holes. Extended male headers were used to
sit the PÚCA board into female headers on a secondary mounted proto board.

8

Reset and Boot Problems

Several pins on the ESP32 perform extra duties during boot time. Of all the pins
available on the PÚCA header pin 12 may cause reset/boot to fail if pulled high. If GPIO
pin 12 is used for a potentiometer the solution is to turn down the pot before any reset.

Here are some other pins that may cause boot problems depending on how you are using
them.

The ESP32 chip has the following strapping pins:
▪ GPIO 0 (must be LOW to enter boot mode)
▪ GPIO 2 (must be floating or LOW during boot)
▪ GPIO 4
▪ GPIO 5 (must be HIGH during boot)
▪ GPIO 12 (must be LOW during boot)
▪ GPIO 15 (must be HIGH during boot)

Random Nerd Tutorials provides an excellent review of ESP32 pin functions at https:/

9

https://randomnerdtutorials.com/esp32-pinout-reference-gpios/

/randomnerdtutorials.com/esp32-pinout-reference-gpios/. Here is what is suggested in
this review.

These pins above are used to put the ESP32 into bootloader or flashing mode. On most development
boards with built-in USB/Serial, you don’t need to worry about the state of these pins. The board puts
the pins in the right state for flashing or boot mode. More information on the ESP32 Boot Mode
Selection can be found here.

However, if you have peripherals connected to those pins, you may have trouble trying to upload new
code, flashing the ESP32 with new firmware, or resetting the board. If you have some peripherals
connected to the strapping pins and you are getting trouble uploading code or flashing the ESP32, it
may be because those peripherals are preventing the ESP32 from entering the right mode. Read the
Boot Mode Selection documentation to guide you in the right direction. After resetting, flashing, or
booting, those pins work as expected.

The PÚCA board exhibited another boot problem. Occasionally it would timeout while
trying to upload new programs, complaining that it was unable to get into boot/flash
mode. The usual solution to this problem is to utilize the "boot" pushbutton (connected
to GPIO 0), however, the PÚCA board has no "boot" button. The problem seemed to go
away for a while if the the board power was disconnected for a couple minutes.

My final solution was to connect a 10µF capacitor between the RST (reset) line and
GND (ground) on the 4 pin board header. The negative side of the cap is connected to
GND. This solution is suggested in the website https://randomnerdtutorials.com/solved-
failed-to-connect-to-esp32-timed-out-waiting-for-packet-header/

PÚCA Software Package

This ESP32 Codec software package is designed to simplify what can be an
intimidating programming task by encapsulating each of many program tasks into
separate program files, each with its own clearly defined job.

Most of the effects programming will involve just three files in the package.

1. The set_settings.h and .cpp files holds all the program settings in the
form of constants such as sample rate, bits per sample, number of
channels, DMA memory sizes and, of course, the ESP32 pin
assignments for the physical controllers, LEDs, I2S interface and
I2C interface. These files also set up the I2S_init() function.

2. The set_module.h and .cpp files hold all the setups for physical
controllers such as the button[] and control[] parameters, the
controller init(), and the event handler methods. These methods

10

https://randomnerdtutorials.com/esp32-pinout-reference-gpios/
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/boot-mode-selection.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/boot-mode-selection.html
https://docs.espressif.com/projects/esptool/en/latest/esp32/advanced-topics/boot-mode-selection.html
https://randomnerdtutorials.com/solved-failed-to-connect-to-esp32-timed-out-waiting-for-packet-header/
https://randomnerdtutorials.com/solved-failed-to-connect-to-esp32-timed-out-waiting-for-packet-header/

are also used to control any LEDs and set up any DSP tools and
variables. The set_module files will be a major focus point in
effects programming.

3. Finally, the while(1) infinite loop within main.cpp will hold the
actual effects processing routines down at the audio sample level.

The remaining files in the package will rarely need changes.

1. The codec.h and .cpp files along with set_codec.h and .cpp need to
be changed only with a different codec. In both the LyraT and A1S
Audio Kit boards the codec used was an ES8388. The PÚCA board
uses a Wolfson WM8978 codec. Changing to a different codec
driver in these files will not likely affect the content of the other
files in the package.

2. The controller_mod.h and .cpp files will hardly ever need changes.
Any needed changes are applied the "child" class
controller_module constructed in the set_module files.

3. The task.h and .cpp files define task functions for polling the buttons
and controllers along with some system monitor tasks. The LyraT
PDF does show some simple changes made to the button polling
task to accommodate Touch sensors. In general, though, these files
will not need any changes. They will satisfy most any controller
used in your design.

4. Finally, the DSP (Digital Signal Processing) tool files -- bsdsp.h,
bsdsp.cpp, and dsptable.h, can always be expanded with new class
tools, but currently they hold quite a wide variety of tools ripe for
exploration.

The Codec Files

The codec.h and .cpp files are used to configure the Wolfson WM8978 codec. All
codecs have the same basic components:

• audio inputs to Analog to Digital Converters (ADCs),
• audio outputs from Digital to Analog Converters (DACs),
• a large bank of registers to set the codec operation parameters,

11

• an I2C serial interface to access those registers,
• an I2S serial interface to move data in and out of the ADCs and DACs,
• a master clock input to time the I2S data movement.

So codecs use two interface protocols. A Two-wire I2C interface is used to configure the
chip, and the I2S is used to move the audio data. In the WM8978 codec the I2C interface
is used to load and read 58 user programmable 9-bit registers that set up I/O
connections, sampling rate, sample format, sample size, volume, filters, effects, etc.

codec.h and .cpp files were readily available for the WM8978 from the PÚCA GitHub
development software at https://github.com/hamuro80/blackstomp. They included all
the components common to codec drivers:

1. Creation and initialization of an I2C interface. The initialization
requires two GPIO pin assignments and a speed value. It uses an
#include "driver/i2c.h" library. The initI2C() method is placed at
the start of the codec init() method. This is a little different from
I2C initialization for the LyraT and E1S boards which used the
Wire.h library and required some extra I2S lines in the set_codec.h
file and the setup() section of main.cpp.

2. The WM8978 has 58 9-bit registers used to configure the codec via
the I2C interface. The next required methods are writeReg() and
readReg() to access these registers.

3. Next is an init() method used to initialize many of the 58 codec
registers. This will be called in the setup() section of main.cpp.

4. Finally, several short methods are built for convenient access to
specific codec registers such as input and output connections,
output volume, mute, bypass, sample rate, etc. Several of these are
included within the codec_sets() function defined in
set_codec.cpp and called in the setup() section of main.cpp.

To demonstrate how easy it is to work with the codec.cpp "set" methods, here is simple
revision to the sampleRate() register set:

//BEFORE
// Set Sample Rate
// srate: 0~5 , 48kHz, 32kHz, 24kHz, 16kHz, 12kHz, 8kHz
void Codec::sampleRate(uint8_t srate)
{
 uint16_t regval = 0; // 48kHz, default

12

https://github.com/hamuro80/blackstomp

 if(srate==1) regval = 0x2;
 if(srate==2) regval = 0x4;
 if(srate==3) regval = 0x6;
 if(srate==4) regval = 0x8;
 if(srate==5) regval = 0xA;
 writeReg(7,regval); // R7, Additional Ctrl
}

//AFTER
// Set Sample Rate with SAMPLE_RATE set in set_settings.h
// 48kHz, 32kHz, 24kHz, 16kHz, 12kHz, 8kHz
void Codec::sampleRate(void)
{
 uint16_t regval = 0; // 48kHz, default
 if(SAMPLE_RATE==32000) regval = 0x2;
 if(SAMPLE_RATE==24000) regval = 0x4;
 if(SAMPLE_RATE==16000) regval = 0x6;
 if(SAMPLE_RATE==12000) regval = 0x8;
 if(SAMPLE_RATE==8000) regval = 0xA;
 writeReg(7,regval); // R7, Additional Ctrl
}

With this simple change the user only needs to set the sample rate at the #define
SAMPLE_RATE in the file set_settings.h. They no longer have to make sure that the
codec sampleRate() method agrees with the SAMPLE_RATE setting.

The complete documentation for the Wolfson WM8978 Codec and all its 58 registers
can be downloaded from https://www.mouser.com/datasheet/2/76/
WM8978_v4.5-1141768.pdf

The Controller_Mod Files

The controller_mod.h and .cpp file pair builds a base class, called controllerModule,
that will facilitate the use of ESP32 connected potentiometers, switches, and other
sensors to control the parameters of an audio effects program. Two arrays are created as
class attribute members, one for up to 6 potentiometers or other analog sensors called
control[], and another one for up to 6 switches or other digital sensors called button[].
Each array element in turn has several properties such as name, GPIO pin, mode of
operation, and value.

The Task Files

There is a task function for the button[] array elements and one for the control[] array
elements. These tasks will continuously poll all the physical controllers attached to the
ESP32. Using the array element pin parameter, the button task will perform a
digitalRead(pin) and the control task will perform an analogRead(pin). The data is
then manipulated according to the mode parameter and the result stored in the value

13

https://www.mouser.com/datasheet/2/76/WM8978_v4.5-1141768.pdf
https://www.mouser.com/datasheet/2/76/WM8978_v4.5-1141768.pdf

parameter. This is done for each enabled button and control, and then repeated in an
infinite loop.

The task files also includes a system monitor task function which prints out the above
button and control values along with some system information about once per second.

The DSP Files

Effects programming can take advantage of the three Blackstomp Digital Signal
Processing files -- bsdsp.h, bsdsp.cpp, and dsptable.h, which contain the following
effect classes and tables:

dsptable.h contains a 256 element sine-wave table. sine_table[] covers a full wavelength in floating
point fractional values ranging from +1 to -1. Also included for filters is a hann_table[], 256 floating
point fractional values ranging from 0 to +1.

The following DSP classes are defined in the bsdsp files:

biquadFilter -- A direct-form-2 biquad iir filter.

oscillator -- Creates an oscillator from a 256 element table of one waveform cycle. It can use any
built waveform table including the sine_table[] from dsptable.h

fractionalDelay -- Implements a delayed output by building a circular sample buffer sized for a given
maxDelayInMs. You can then request a sample read at any delay value up to the maxDelay.

waveShaper -- Applies a transfer function from transferFunctionTable[] to the input stream. This is
a default exponential function but any 256 element array could be used.

rcHighPass -- A simple RC High Pass Filter with variable cutoff frequency.

rcLowPass -- A simple RC Low Pass Filter with variable cutoff frequency.

simpleTone -- A simple Bandpass Filter using rcHighPass and rcLowPass.

noiseGate -- A Noise Gate with Envelope and Threshold controls.

lookupLinear() -- A function used whenever a table lookup is implemented in any of the above dsp
classes. It can interpolate a fractional index into a table. Value = table[integer part of index] +
(fractional part of index) * (table[index + 1] - table[index]).

The Set_Codec Files

The set_codec files deal exclusively with the Codec class created in the codec.h/.cpp
files. set_codec.h starts off declaring an instance of the WM8978 Codec class called
codec.

 extern Codec codec;

14

Using the dot operation on the codec object, the user can then call any of the convenient
register "set" functions built in codec.cpp to configure specific Codec settings. This is
exactly what codec_sets() does in the set_codec.cpp file. It runs seven Codec "set"
functions and is executed in the setup() section of main.cpp. Check the comments in
the code for an easy reference to the register setup possibilities.

 //Some functions built to configure Codec registers
 void codec_sets() /to be executed in main.cpp
 {
 codec.addaCfg(1,1); //enable adc and dac (DAC 1/0, ADC 1,0)
 codec.inputCfg(0,1,0); //input config, (MIC 1/0, LINE 1/0, AUX 1/0)
 codec.outputCfg(1,0); //output MIXER config (DAC 1/0, INPUT BYPASS 1/0)
 codec.sampleRate(); //48kHz, 32kHz, 24kHz, 16kHz, 12kHz, 8kHz
 codec.hpVolSet(40,40); //headphone volume 0 TO 63, (LEFT, RIGHT)
 codec.i2sCfg(2,0); // I2S format MSB, 16Bit
 codec.loopback(0); //Bypass, Input to Output when 1, no Bypass when 0
 };

The Set_Settings Files

The set_settings.h file is where all the important program settings are set and labeled,
such as sample-rate, bits-per-sample, number of audio channels, ESP32 pin numbers for
all the physical pot and switch connections, ESP32 pin numbers for the i2c interface and
the i2s codec interface, audio processing settings for DMA size and Framesize.

Note that some of the original WM8978 codec.h constants such as I2C pin assignments
were moved to this file in order to keep all the main program settings in one place.

set_settings.h also declares the I2S_init() function. If you remember, I2S is the codec
interface used to move the audio data into and out of the codec. This function is defined
in detail in set_settings.cpp and executed in the setup() of main.cpp. Many of the
settings in I2S_init() use the constant labels defined in set_settings.h.

Here is the set_settings.h file specific to the PÚCA board and the attached pots,
pushbuttons and LEDs described in this project:

#ifndef SETTINGS_H_
#define SETTINGS_H_

 #pragma once
 #include "codec.h"
 #include <Arduino.h>
 #include "driver/i2s.h"

 #define SAMPLE_RATE (48000)
 #define BITS_PER_SAMPLE (16)

15

 #define CHANNEL_COUNT 2

 //ESP32 PUCA PIN ASSIGNMENTS
 //~~~~~~~~~~~~~~~~~~~~~~~~~~~

 #define POT1 32
 #define POT2 34
 #define POT3 35
 #define POT4 33

 #define LED1 4
 #define LED2 2

 #define KEY1 14 //T6
 #define KEY2 13 //T4
 #define KEY3 15 //T3
 #define KEY4 21
 #define KEY_BOARD 36

 #define TOUCH_THRESHOLD 30

//ESP32-Codec PIN SETUP

#define I2S_NUM (0)
#define IS2_MCLK_PIN (0)
#define I2S_BCLK (23)
#define I2S_LRC (25)
#define I2S_DIN (27)
#define I2S_DOUT (26)

#define Codec_SDA 19 //SDA
#define Codec_SCK 18 //SCL
#define I2C_MASTER_SCL_IO 18
#define I2C_MASTER_SDA_IO 19
#define Codec_ADDR 0x1A //WM8978
#define WM8978_ADDR 0X1A //WM8978
#define I2C_MASTER_NUM 1 /*!< I2C port number for master dev */
#define I2C_MASTER_FREQ_HZ 100000
#define I2C_MASTER_TX_BUF_DISABLE 0
#define I2C_MASTER_RX_BUF_DISABLE 0

#define FRAMELENGTH 256
#define AUDIO_PROCESS_PRIORITY 10

#define DMABUFFERLENGTH 64
#define DMABUFFERCOUNT 4

// processor timing variables for system monitor in task.cpp
 extern unsigned int runningTicks;
 extern unsigned int usedticks;
 extern unsigned int availableticks;
 extern unsigned int availableticks_start;
 extern unsigned int availableticks_end;
 extern unsigned int usedticks_start;
 extern unsigned int usedticks_end;
 extern unsigned int processedframe;
 extern unsigned int audiofps;

 void I2S_init(void);

16

#endif

Effects Programming

Programming Effects will mainly involve the set_module.h, set_module.cpp, and
main.cpp files. Two examples will be given for the PÚCA board, first a simple
volume control effect called gainDoubler, and then a more involved Stereo Chorus
effect that uses some of the DSP class tools from the files bsdsp.h and .cpp.

The Set_Module Files for gainDoubler

Set Module Header
With the following lines the set_module.h file makes two important code declarations:

 class controller_module:public controllerModule
{
public:
 float gain;
 float gainRange;
 void init();
 void onButtonChange(int buttonIndex);
 void onControlChange(int controlIndex);
};
 //controller_module myPedal declaration with extern
 extern controller_module *myPedal ;

It first creates a child class called controller_module derived from the base/parent
controller class, controllerModule, which was built in the controller_mod files. Within
the class brackets are those base controllerModule methods that will be needed for your
particular effect application. Here you must also include any additional class attribute
variables needed in the effect, most often to hold the values read off the pots and
switches such as the gain and gainRange. A child class inherits all the elements of the
base class but you can also expand it with elements of its own such as these new effects
attributes.

In the final line an instance object called myPedal is created from the child class
controller_module. In actuality, myPedal is declared as a pointer to the instance
object. This will make the code a bit easier to read. The access operator for myPedal as
a pointer will be "->" while the simple dot is the access operator for the different
properties of control[] and button[]. As an example, accessing a pot value will look
like myPedal->control[3].value

17

Set Module CPP
The file set_module.cpp will flesh out the details of this new child class,
controller_module, but first it defines myPedal, which was only declared above in the
header file. This will immediately trigger the controllerModule Constructor method
from controller_mod.cpp which initializes all the members of control[] and button[].
Specifically, all the member mode's are set to DISABLED.

 controller_module *myPedal = new controller_module();

Set Module Init()
The first controller_module class method defined is init(). Here we can start off giving
our effect an actual name. Our example effect here is "Gain Doubler" which will provide
simple signal amplitude control. Next, the init() is a convenient place to configure any
ESP32 pins connected to switches as inputs with pullup resistors, and any ESP32 pins
connected to LEDs as digital outputs.

 name = "gainDoubler"

 pinMode(KEY1, INPUT_PULLUP);
 pinMode(KEY2, INPUT_PULLUP);
 pinMode(KEY3, INPUT_PULLUP);
 pinMode(KEY4, INPUT_PULLUP);

 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);

Next, within init(), the properties of the class attributes control[] and button[] are
defined. If you remember, the class Constructor method initializes all these properties
making all the controls and buttons inactive. That means we only have to enable and set
up two buttons and two controls since that is all the controllers used in this effect pedal.

//setting up the buttons

 button[0].name = "KEY1";
 button[0].mode = BM_MOMENTARY;
 button[0].pin = KEY1;

 button[1].name = "KEY2";
 button[1].mode = BM_TOGGLE;
 button[1].pin = KEY2;

 //add gain control
 control[0].name = "Gain";
 control[0].mode = CM_POT;
 control[0].levelCount = 128;
 control[0].pin = POT1;

 //add range control
 control[1].name = "Range";
 control[1].mode = CM_SELECTOR;

18

 control[1].levelCount = 3;
 control[1].pin = POT2;

 gain = 1.0;
 gainRange = 1.0;

Note that many of the control[] and button[] properties are not implemented either
here or in the controltask() and buttontask() functions. They are available for future
use. The control[] and button[] properties set up in init() are directly used by
buttontask() and controltask() in the file task.cpp. In fact, this init() method is
executed in main.cpp right before taskSetup() which starts up the button and control
tasks.

Note also that the two extra class attributes gain and gainRange are defined within
init() and given initial values.

Set Module Event Handlers
After adjusting the pot and button values according to their respective mode and
levelCount properties, the button and control tasks send out their final controller value
to the methods onButtonChange() and onControlChange(). What happens inside
these two methods is defined next within the file set_module.cpp.

void controller_module::onButtonChange(int buttonIndex)
{
 switch(buttonIndex)
 {
 case 0: //"KEY1" button state has changed
 {
 if(button[0].value) //if effect is activated
 {
 //codec.loopback(0);
 codec.hpVolSet(40, 40);
 digitalWrite(LED1, HIGH);
 }
 else //if effect is bypassed
 {
 //codec.loopback(1);
 codec.hpVolSet(0, 0);
 digitalWrite(LED1, LOW);
 }
 break;
 }

 case 1: // "KEY2" button[1] state has changed
 {
 if(button[1].value) // just test LED and Switch
 {digitalWrite(LED2, HIGH);}
 else \
 {digitalWrite(LED2, LOW);}
 break;
 }
 }
}

19

In the above onButtonChange() method the switch/case steps through each of the
hardware pushbuttons used in this effects box (only two in this case) and sets an ac-
tion for each of them. The one switch will use the codec "set" method hpVolSet() to
act as a Mute and set an LED as an indicator light. The other switch turns on and off
the other LED in toggle mode as a simple test.

 void controller_module::onControlChange(int controlIndex)
{
 switch(controlIndex)
 {
 case 0:
 {
 gain = (float)control[0].value/127.0;
 break;
 }
 case 1:
 {
 if(control[1].value==0)
 gainRange = 1;
 else if(control[1].value==1)
 gainRange = 2;
 else gainRange = 3;
 break;
 }
 }
}

In the above onControlChange() method the value from the "gain" pot is converted
to a float and then divided by 127 resulting in a fractional value between 0 and 1. The
other pot is used for "gainRange". In init() it was configured in CM_SELECTOR
mode with 3 levels. As such it will act like a 3 position selector switch, with the
gainRange attribute values of 1, 2, or 3. These two object variables, myPedal->gain
and myPedal->gainRange, will then be used in the actual signal processing loop
within main.cpp to affect the signal volume.

To summarize, the init() method is defined mainly to set up the control[] and but-
ton[] properties used in buttontask() and controltask() to adjust the values read
from the ESP32 controller pins. The two event handlers, onButtonChange() and
onControlChange(), use the final button[].value and control[].value to affect the
signal processing either directly through codec methods or indirectly through created
processing variables.

20

The Main.cpp File for gainDoubler

The main.cpp file stands apart from all other files. It takes the place of the main()
function found in most C/C++ programs. As such, it is considered by the compiler to
be the programming entry point, the first method that will get executed by the
compiler. All the file content described up to this point serves only as input support to
main.cpp. All previously defined methods await execution only from within main().
In general, no function can be called from outside of main.cpp except the class
Constructor methods which is called when a class instance object is created.

Since we are programming in an Arduino Framework from the PlatformIO IDE the
main.cpp file has the same format as an Arduino sketch file (labeled with the .ino
extension in the Arduino IDE but with the .cpp extension here). It includes two main
functions, one called setup() and another called loop(). The first is called one time only
at the start of the program. The second is called repeatedly in an infinite loop as the
program continues.

Includes
Preceding setup() within the main.cpp file are a number of #includes:

 #include <Arduino.h>
 #include "set_settings.h"
 #include "set_module.h"
 #include "set_codec.h"
 #include "task.h"

#include <Arduino.h> is needed because the Arduino IDE is not being used. Without it
the compiler would not recognize various Arduino constant labels like HIGH, LOW,
INPUT_PULLUP and such. Note that all three "set" files described above are in the
#include list along with the task file.

Setup()
The setup() function within main.cpp is the official program start point. Within
setup() several functions are executed that initialize and startup the codec and its two
interfaces -- I2C, used to load the codec registers, and I2S, used to control the audio data
flow. The file set_codec.cpp built the function codec_sets() which includes several
codec register "set" methods to configure the codec. That is executed here in setup().
Finally, the Serial Monitor is turned on with Serial.begin(115200) so that the System
Monitor can be run if the user wants some continuous visual feedback on the effects
controllers and system loads.

void setup()

21

{
 //~~~~~~~~~~~codec is initialized See Codec.cpp~~~~~~~~~~~~~~~~~
 //~~~~i2c is initialized within codec.init() with initI2C()~~~~~~

 Serial.println("Initialize Codec Codec ");
 codec.init();
 codec_sets();
 Serial.println("Init success!!");

 //~~~~~~I2S is initialized. See set_settings.cpp~~~~~~~~~

 I2S_init();

 //~~~~~~~~~~~~~~Monitor (can be commented out)~~~~~~~~~~

 Serial.begin(115200);
 delay(1000);

 Serial.println("I2S setup complete");
 runSystemMonitor(); //for testing only

} //Setup End

Loop()
The loop() function within main.cpp is the heart of the effects pedal program. The
signal processing code for the effect is contained in loop() within an inner loop bound
by the brackets of while(1) { ... }. Code inside the loop() function is automatically
assigned by the compiler to Processor Core 1.

Before the inner loop is entered, all buffers and floating point variables used in the signal
processing code are defined. Then myPedal init() (see set_module.cpp) is called
along with taskSetup() (see task.cpp) before the inner loop starts.

Below is the complete inner while(1) loop containing the code for the simple
gainDoubler audio effect.

 while(1)
 {
 i2s_read(I2S_NUM_0, rxbuf, FRAMELENGTH*2, &readsize, 20);
 for (int i=0; i<(FRAMELENGTH); i+=2)
 {
 rxl = (float) (rxbuf[i]) ; //convert samples to float
 rxr = (float) (rxbuf[i+1]) ;

 txl = myPedal->gain * myPedal->gainRange * rxl;
 txr = myPedal->gain * myPedal->gainRange * rxr;

 txbuf[i] = ((int16_t) txl) ; //convert samples back to integer
 txbuf[i+1] = ((int16_t) txr) ;
 }
 i2s_write(I2S_NUM_0, txbuf, FRAMELENGTH*2, &readsize, 20);
 }

22

This is simple amplitude control of a 16-bit audio signal. It starts off with i2s_read()
loading rxbuf with FRAMELENGTH number of samples from a DMA receive Buffer
filled by the ADC under DMA control. Since the samples are 16 bits or 2 bytes
(BITS_PER_SAMPLE = 16) and i2s_read() reads a byte at a time, it must read a total
of FRAMELENGTH*2 bytes. The signal is stereo (CHANNEL_COUNT = 2) so the
incoming samples alternate between left and right channels.

A "for" loop will step through the frame of samples one at a time. The sample is first
converted to a floating point number and placed in a temporary holding float variable,
rxl for left channel and rxr for right channel. Floating point math usually has a severe
negative effect on CPU performance time but, amazingly, the ESP32 has a built-in FPU
(Floating Point Unit) which provides acceleration on single precision floating point
arithmetic.

The middle two lines are the actual signal processing code:

 txl = myPedal->gain * myPedal->gainRange * rxl;
 txr = myPedal->gain * myPedal->gainRange * rxr;

The variables gain and gainRange are derived from two pot values, as defined in the
file set_module.cpp. The variable "gain" has been adjusted to result in a floating
fractional value between 0 and 1. The "gainRange", also defined in set_module.cpp,
comes from a 3-selector switch pot with values 1, 2, and 3. These are all multiplied with
the left and right signal samples for a super simple amplitude control.

The processed right and left float values are then converted back to 16-bit integers
(int16_t) and loaded into the txbuf. When the "for" loop is finished processing the
entire frame's collection of samples, the i2s_write function is ready to load them all into
a DMA transmit buffer to be fed to the DAC output at the SAMPLE_RATE under
DMA control.

Timing is critical here. The i2s_write() function must happen before the transmit
buffers go empty from the DMA constantly feeding the output DAC; and the i2s_read()
function must happen before the receive buffers are completely filled from the DMA
constantly feeding them input ADC samples. An overflowing receive buffer or an empty
transmit buffer can be prevented by careful settings of DMABUFFERLENGTH,
DMABUFFERCOUNT, and FRAMELENGTH, and, of course, by keeping the signal
processing time as short as possible.

23

The Set Module Files for Chorus

Set Module Header
The set_module.h file first declares two instances of the fractionalDelay DSP class
and two instances of the DSP oscillator class, both found in the bsdsp files. It then
sets up the child class controller_module and outlines all the class elements needed
for the Chorus Effect including several new attributes - depth, freq, beatFrequency,
phaseDiff, asynch, and stereo.

#include "controller_mod.h"
#include "bsdsp.h"

//~~~
//~~~~ DSP Class Declarations (bsdsp files) ~~~
//~~~

 extern fractionalDelay delay1;
 extern fractionalDelay delay2;

 extern oscillator lfo1;
 extern oscillator lfo2;

//Create a child class derived from controllerModule
//The controller_module sets up all Pot, Switch, and LED pin, mode, and
actions

class controller_module:public controllerModule
{
 public:
 float depth;
 float freq;
 float beatFrequency;
 float phaseDiff;
 bool asynch;
 bool stereo;

 void init();
 void onButtonChange(int buttonIndex);
 void onControlChange(int controlIndex);
};

//controller_module myPedal declaration with extern
extern controller_module *myPedal ;

Set Module CPP
The set_module.cpp file completes the definition of DSP instance objects delay1,
delay2, lfo1, lfo2 and initializes the delay buffer sizes with the fractionalDelay class
method init() found in the file dpdsp.cpp.

//~~~
//~~~~ DSP Class Definitions (bsdsp files) ~~~
//~~~

24

 fractionalDelay delay1;
 fractionalDelay delay2;
 bool x = delay1.init(3); //init for 3 ms delay
 bool y = delay2.init(3); //init for 3 ms delay
 oscillator lfo1;
 oscillator lfo2;

Set Module Init()
It then sets up all the necessary pinModes and the button[] and control[] properties
for the physical switches and potentiometers to be used to control the chorus effect
parameters. Notice also that initial values are set for all the new chorus attributes
declared above, even making use of an oscillator class method, setFrequency() to
initialize the two oscillator instances with frequency values.

//~~~
//~~~~~~ CONTROLLER MODULE CLASS DEFINITIONS ~~~~~~
//~~~

// Define the ControllerModule functions declared above
//~~~
void controller_module::init() //effect module class initialization
 {
 name = "Stereo Chorus";
 inputMode = IM_LR; // IM_LR or IM_LMIC

 // Set up pin Modes for the switches and LEDs
 // For mode details, see control_task() and button_task() in task.cpp
 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 pinMode(KEY1, INPUT_PULLUP);
 pinMode(KEY2, INPUT_PULLUP);
 pinMode(KEY3, INPUT_PULLUP);
 pinMode(KEY4, INPUT_PULLUP);

 //setting up the buttons
 button[0].name = "KEY1";
 button[0].mode = BM_MOMENTARY;
 button[0].pin = KEY1;

 button[1].name = "KEY2";
 button[1].mode = BM_TOGGLE;
 button[1].pin = KEY2;

 //add gain control
 control[0].name = "Rate";
 control[0].mode = CM_POT;
 control[0].levelCount = 128;
 control[0].pin = POT1;

 //add range control
 control[1].name = "Depth";
 control[1].mode = CM_POT;
 control[1].levelCount = 128;
 control[1].pin = POT2;

25

 control[2].name = "F/P Diff";
 control[2].mode = CM_POT;
 control[2].levelCount = 128;
 control[2].pin = POT3;

 control[3].name = "Input Mode";
 control[3].mode = CM_SELECTOR;
 control[3].levelCount = 2; //0:mono 1:stereo
 control[3].pin = POT4;

 freq=5;
 depth=0.5;
 beatFrequency=2.5;
 stereo = 1;
 asynch = 1;
 lfo1.setFrequency(freq);
 lfo2.setFrequency(freq+beatFrequency);
 }

Set Module Event Handlers
Finally, the button and control event handlers are defined.

void controller_module::onButtonChange(int buttonIndex)
{
 switch(buttonIndex)
 {
 case 0: //main button state has changed
 {
 if(button[0].value) //if effect is activated
 {
 codec.loopback(0);
 //codec.hpVolSet(40, 40);
 digitalWrite(LED1, HIGH);
 }
 else //if effect is bypassed
 {
 codec.loopback(1);
 //codec.hpVolSet(0, 0);
 digitalWrite(LED1, LOW);
 }
 break;
 }
 case 1: //the button[1] state has changed
 {
 if(button[1].value) // just test LED and Switch
 {digitalWrite(LED2, HIGH);}
 else
 {digitalWrite(LED2, LOW);}
 break;
 }
 }
}
//~~~
void controller_module::onControlChange(int controlIndex)
{
 switch(controlIndex)

26

 {
 case 0: //rate
 {
 freq = 0.5 + 10 * (float)control[0].value/127.0;
 lfo1.setFrequency(freq);
 lfo2.setFrequency(freq + beatFrequency);
 break;
 }
 case 1: //depth
 {
 depth = 1.49 * (float)control[1].value/127.0;
 break;
 }
 case 2: //phase or frequency difference
 {
 beatFrequency = 5 * (float)control[2].value/127.0;
 phaseDiff = (float)control[2].value;
 lfo2.setFrequency(freq + beatFrequency);
 break;
 }
 case 3: //stereo
 {
 stereo = (bool)control[3].value;
 break;
 }
 }

The Main.cpp File for the Chorus Effect

Most of the main.cpp file will remain the same as described for the gainDoubler. This
will be the case for any programmed effect. The only change is to the sample
processing part of the while(1) loop. Here those lines are framed by the "stereoChorus
Processing" comment lines (shown in bold).

 while(1){ //signal processing loop
 setDebugVars(myPedal->depth, myPedal->freq, 0, 0);

 //gather some input samples into receive buffer from the DMA memory,
 i2s_read(I2S_NUM_0, rxbuf, FRAMELENGTH*2, &readsize, 20);

 for (int i=0; i<(FRAMELENGTH); i+=2) { //process samples one at a time
from buffers

 rxl = (float) (rxbuf[i]) ; //convert sample to float
 rxr = (float) (rxbuf[i+1]) ;

 //~~~
 //~~~~~~~~~stereoChorus Processing~~~~~~~~~~~~~
 //~~~
 delay1.write(rxl);
 delay2.write(rxr); //write anyway, no matter it's stereo or mono input

 lfo1.update();

27

 lfo2.update();
 float dt1 = (1 + lfo1.getOutput())* myPedal->depth;
 float dt2;
 if(myPedal->asynch == 0) //asynchronous
 dt2 = (1 + lfo2.getOutput())* myPedal->depth;
 else //synchronous
 dt2 = (1 + lfo1.getOutput(myPedal->phaseDiff))* myPedal->depth;

 txl = (0.7 * rxl) + (0.7 * delay1.read(dt1));
 if(myPedal->stereo) //if stereo input
 txr = (0.7 * rxr) + (0.7 * delay2.read(dt2));
 else //if mono
 txr = (0.7 * rxl) + (0.7 * delay1.read(dt2));
 //~~~

 txbuf[i] = ((int16_t) txl) ; //convert sample back to integer
 txbuf[i+1] = ((int16_t) txr) ;
 }
 // play processed receive buffer by loading transmit buffer into DMA
memory
 i2s_write(I2S_NUM_0, txbuf, FRAMELENGTH*2, &readsize, 20);

} // End of while(1) loop

Here is a short description of the signal processing going on.

The code first loads the input signal samples into the two circular delay buffers. The
index, dt1 and dt2, into each of these delay buffers determines the amount of delay. The
two low frequency oscillator outputs multiplied by the depth control are applied to the
two delay buffer indices. This results in an oscillating amount of delay in the two delay
lines, one oscillating a bit faster than the other. Finally, the output samples are generated
as an equal mix of the original signal samples and the delayed samples, the left channel
given a different delay from the right.

One if/else section sets up a stereo or mono output depending on the boolean value
"stereo". Another if/else section sets up a different dt2 delay index calculation
depending on the boolean value "asynch".

28

29

