
Codec Effects Software for the
ESP32

John Talbert - December 2022

1

E
S

8
3
8
8

 E
S

8
3
8
8
 U

s
e
r

G
u

id
e

2
0

11
-0

6
-1

7

3
 1
 E

S
8

3
8

8
 B

L
O

C
K

 D
IA

G
R

A
M

Table of Contents

Acknowledgements..4

Project Goals ...4

C++ Software Structure ...6
The IDE Platform ..6
OOP Terminology ...6
Header and CPP Files ..8
Constant Labels ...9

The Codec Files..11
Codec Basics ...11
I2C Interface...12
Get and Set Methods ...12
Other Codecs ...13

The Controller Module Files...14
Control Array ..15
Button Array ...15
Methods ...16
Controllers ..17

The Task File ..18
ControlTask ..18
ButtonTask ...18
System Monitor Task..19
FreeRTOS...19
taskSetup ...21

The Set Files...22
Set Codec ..22
Set Settings..23
Set Control ...24

Set Control Header ..24
Set Control CPP...24
Set Control Init() ..25
Set Control Event Handlers ...26

The Main.cpp File ..27
Includes ..28
Setup() ...28
Loop() ..30

Direct Memory Access (DMA)...30

2

The Effect Programs ..33
gainDoubler 16-bit..33
gainDoubler 24-bits..34
BSDSP DSP Files ...35
Stereo Chorus 24-bit ..36
Stereo Chorus with System Monitor ..42

Summary ..43

3

Acknowledgements
Many thanks to Hasan Murod who created the software package upon which this
project is based. It was written for the Blackstomp Effect Pedal project (https:/
/www.deeptronic.com/blackstomp/) which is a quick development platform for an
ESP32 based audio effects module. The original software package can be found at
https://github.com/hamuro80/blackstomp

Thanks also to Arif Darmawan for his ES8388Arduino software at https://github.com/
vanbwodonk/es8388arduino. This is probably the absolute minimum software needed
to get the ES8388 codec working on an ESP32. This coding project started from this
simple working package. Elements from the Blackstomp software were incrementally
added until I had a full, though scaled back, working version of Blackstomp.

Project Goals
The main goal of this project was a simple software platform for exploring audio
effects on an ES8388, or other codec, connected to the ESP32 microprocessor. All
parts of the package should be straightforward and accessible. Though this is a scaled
back version of the Blackstomp package, its best attributes were retained:

• A robust codec driver.

• A versatile controller interface providing the user full setup and use of
devices such as potentiometers, switches, LEDs and sensors.

• Deployment of the ESP32 dual processors and FreeRTOS for superior
program efficiency.

 • A system and error monitoring tool.

• Full access to Blackstomps' collection of dsp audio effects

There is much to learn here about c++ programming, how codecs work, and about
some surprising features built into the ESP32. This paper should serve somewhat as a
tutorial on the following topics with concrete examples in the package code:

4

https://www.deeptronic.com/blackstomp/
https://www.deeptronic.com/blackstomp/
https://github.com/hamuro80/blackstomp
https://github.com/vanbwodonk/es8388arduino
https://github.com/vanbwodonk/es8388arduino

Object Oriented Programming
The IDE Platform
OOP terminology such as class, attribute, method, instance, etc.

 Header/CPP file pairs
C++ structures such as #define, enum, enum typedef, struct

Codec Structure
I2C Interface for registers
I2S Interface for ADC and DAC
Parameter Registers
Register Methods

Controllers
Digital - buttons, switches
Analog - pots, sensors
Controller arrays with member typedef enum parameters
Controller value manipulation
Controller Event Handlers
Controller OOP base class, child class, instance object

ESP32 Special Features
Dual Processor Cores and Tasks
FreeRTOS (Real Time Operating System)
DMA (Direct Memory Access)
FPU (Floating Point Unit)
I2C Serial Interface
I2S Audio Serial Interface

Audio Effects Coding
ADC and DAC with DMA
DMA memory
Integrating Physical Controllers
Integrating DSP classes (Digital Signal Processing)

Program Monitoring and Error Detect

5

C++ Software Structure

The IDE Platform
This software package was programmed in an Arduino Framework built over top of
C++ and as such it should be compatible with the Arduino IDE (Integrated
Development Environment). However, the IDE actually used was the PlatformIO
within Visual Studio Code. Instructions for installing and using PlatformIO can be
found at https://randomnerdtutorials.com/vs-code-platformio-ide-esp32-esp8266-
arduino/ It has the following advantages:

• Advanced Editor with color coding and auto-complete code entry suggestions
• Detailed Error highlighting and descriptions
• Multiple open file tabs
• Code search and navigation over multiple files
• Project files loaded with specified versions of dependent libraries
• Auto detection of your COM port
• Included Terminal window
• Included GIT tool for saving different stages of your work

OOP Terminology
Object Oriented Programming is used throughout this project. OOP has its own special
structure and terminology which will be summarized here to give you a better
understanding of the software coding.

The central component of OOP is the Class. This is a kind of container for related
variables called attributes, and functions called methods. Here is an example of a
class declaration:

class className
{
 private:

int x;
int y;

 public:
int attribute1;
bool attribute2;
ATTRIBUTE3 my_TypedefEnum;

 className(); // Class Constructor
 ~className(); // Class Destructor
 bool method1();
 bool method2();

6

https://randomnerdtutorials.com/vs-code-platformio-ide-esp32-esp8266-arduino/
https://randomnerdtutorials.com/vs-code-platformio-ide-esp32-esp8266-arduino/

 int getX();
 bool setX(int x_value);
};

The class declaration starts off with a list of class attributes (variables) and ends with
a number of class methods (functions). Notice the "access specifiers" private and
public. Public attributes can be accessed outside the class. Private attributes can
only be accessed through special class methods. Some of these special methods may
include functions generically called "getters" and "setters". Notice the getter method
getX() used to return the value of the private integer x attribute. Likewise the setX()
method sets the value of the private x attribute and returns a true if successful.

The className() method in the above example is a special function called the class
Constructor. This unique method has the same name as the class name and is
executed only once when a version, or instance, of the class is first created. Usually it
is used to initialize the class attributes. Similarly, the Destructor is a special method
used to clean up when the class is no longer needed.

Notice how sparse the above class declaration is. The attributes are not given values
here and the methods reveal only input/output structure but no details of what it
actually does. This is called a class "declaration" and is placed in an .h, or header file
(somefilename.h). A paired .cpp file (somefilename.cpp) is then used to fill out the
details of the class, referred to as the class "definition". The form a method definition
takes is the following using the double colon operator.

int className::getX() { method details }

An OOP Class acts only as a kind of template. Before actually using it in your code
you must first create one or more "instances" of the class (or instantiate the class) like
so:

className myClassname;

myClassname is then an "object" of the class className. Elements of this new class
object can be accessed using a dot operator like myClassname.parameter1, or
myClassname.method1().

Alternatively, the new class object can be instantiated as a pointer:

className *myClassnamePointer;

The elements of this pointer to a new class object must be accessed using an arrow
operator like myClassnamePointer->parameter1 or myClassnamePointer->method1().

7

Another useful alternative is to use OOP Inheritance to create a new "child" class
from "className", add your own extra features to the child class, and then instantiate
this expanded child class. The child class is said to be "derived" from a "base" or
"parent" class and it inherits all the attributes and methods of its base class. You can
then add more attributes and methods, expanding on those of the base class.

class child_of_className:public className { };
child_of_className myChild;

Header and CPP Files
One of the more difficult aspects of C++ programming in a complex multi-file OOP
project is code organization and placement. Compile errors can easily crop up
complaining of "undefined" variables or methods "within this scope" even though they
were defined elsewhere. Then the opposite error of "multiple definitions" can happen
even though they were defined only once, but were #included on several file levels
(including a file that includes a file with definitions).

The best way to mostly avoid such problems is to adhere to the common program
structure of paired .h header declaration files with .cpp definition files. The header
file can be "included" at the start of any file that requires its content with this line:
#include "somefile.h" Note that, at the very least, this #include line must always be
added to the top of its paired file.cpp.

In summary, each class or group of utility functions will place their definitions in a
separate .cpp file that defines everything in detail what was simply declared in a
corresponding .h file. The .h file can then be #included by the many different parts of
the program that need those classes or functions. Never name a .cpp file in an
#include. In general, #include names only .h files.

In this way each .cpp file is separately compiled only once, and then linked, using the
.h file #include directives, with the output of other .cpp files to form the complete
program. If there are pieces of code that need to be #included in more than one other
file of the program, you may need to separate the code out as smaller functional unit .h
/.cpp file pairs to avoid the "multiple definitions" error.

A .cpp file can sometimes include code declarations but only when it doesn’t need to
share them with other parts of the program. However, keep in mind that the primary
purpose of a .cpp file is to contain definitions that must only be compiled once.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

8



It's important to understand the distinction between "declaring" and "defining". 

Declaring a variable (in a header file .h) simply declares the existence of the variable 
to the program. It tells the compiler that a variable of a certain type exists somewhere 
in the code. You declare a float variable as follows:  float x;
At this point, the variable doesn't have any memory allocated to it. The compiler only 
knows that a float variable named x exists somewhere in the code. Defining the 
variable (usually in the paired .ccp file), on the other hand, means declaring the 
existence of the variable as well as allocating the necessary memory for it. You define 
a variable as follows:  float x = 10.14;

You can declare a variable as many times as you want, but you can define a variable 
only once. This is because you cannot allocate memory to the same variable multiple 
times (multiple definitions error).

To guarantee against the dreaded "multiple definitions" error use the "extern" 
keyword in front of all variable, function, and class declarations in the .h header file 
as follows:  extern float x;    Then, in the paired .ccp file define the variable as usual 
in detail:  float x = 0;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are two forms of #include, #include <somefile> and #include "somefile.h".
The #include < > instructs the processor to look for the file in a standard C directory or
external library. The #include " " instructs the processor to first look for the file in the
current directory of user programmed files, before checking the external C directory.

Constant Labels
This software package makes liberal use of names or labels associated with integer
constants. These are often indicated by all-cap labels and are used to make the code
more readable. They come in the several different forms.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#define is a preprocessor directive.  It is not a program statement. Before any 
compilation, the preprocessor runs through the code replacing any #defined LABEL 
with its defined value. Note that #define is different from a "const" declaration which 
has a scope.  Also note that there is no comma or semicolon at the end of the 
declaration.

#define Codec_DACCONTROL30 0x34

9



~~~~~~~~~~~~~~~~~~~~~~~~~~~~

An "enum" is similar to #define in that it gives a set of integers individual labels. The
computer uses the number while the programmer can use the more descriptive label. If
an actual integer value is not designated behind an equal sign within the enum, the
integer values will start with 0 in the list and increment by one.

enum
{
 DATA_FORMAT_I2S = 0x00,
 DATA_FORMAT_LEFT = 0x01,
 DATA_FORMAT_RIGHT = 0x02,
 DATA_FORMAT_DSP = 0x03,
};

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

An enum can be combined with "typedef" to give a "type" name to the data in the 
enum list. When functions need very specific input argument values, a typedef in the
function declaration and typedef labels in the function definition can nail down 
exactly what function input is required from the user. One useful convention it to put 
a "_t" at the end of the typedef name to identify the name as a typedef.

typedef enum   
{ 
  NORTH,
  SOUTH,
  EAST,
  WEST,
} DIRECTIONS_t;

// NORTH=0, SOUTH=1, EAST=2, WEST=3  An enum assigns numbers to Labels.
// The computer uses the numbers while you can use the labels
// With typedef you define your own type, not the usual int, bool, etc.

// declare "directions" as type "DIRECTIONS_t" defined above 

DIRECTIONS_t directions;    
directions = EAST;          // set directions = 2
directions = 3;             //set directions = WEST

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A "struct" is a catch-all collection of different data types. It essentially operates like
a Class definition. Elements of the struct are accessed with a dot operator.

struct WIND //a struct is essentially a Class definition with various types
{
 DIRECTIONS_t wind_direction;
 int speed;

10

 int min;
 int max;
 bool rain;
 int temperature;
};

WIND monday_wind; //declare a Monday wind weather object
monday_wind.wind_direction = NORTH;
monday_wind.speed = 35;
monday_wind.rain = true;

WIND wind_week[7]; //declare a Monday through Sunday weather array
wind_week[0].wind_direction = NORTH; //set Monday's wind direction
wind_week[1].speed = 35; //set Tuesday's wind speed

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The Codec Files

Codec Basics
All codecs have the same basic components: 

• audio inputs to Analog to Digital Converters (ADCs), 
• audio outputs from Digital to Analog Converters (DACs), 
• a large bank of registers to set the codec operation parameters, 
• an I2C serial interface to access those registers, 
• an I2S serial interface to move data in and out of the ADCs and DACs, 
• a master clock input to time the I2S data movement.

So codecs use two interface protocols. A Two-wire I2C interface is used to configure 
the chip, and the I2S is used to move the audio data. In the ES8388 codec the I2C 
interface is used to load and read 53 user programmable 8-bit registers that set up I/O 
connections, sampling rate, sample format, sample size, volume, filters, effects, etc. 

A block diagram of the ES8388 codec by Everest Semiconductor is shown on the cover
sheet of this paper.  The PDF data sheet for the ES8388 can be found at 
http://www.everest-semi.com/pdf/ES8388%20DS.pdf

The software driver for a codec may at first seem complex but is actually very 
straightforward.  Any seeming complexity comes from the large number of setup 
registers (53 for the ES8388). The bulk of  the ES8388 datasheet is concerned with 
identifying these 53 registers. Only a few of these registers are of real interest to the 
user and these are provided get and set functions in the codec class. Most of the 
registers can be set in the init( ) function and left at their default settings. The codec 
datasheet will suggest "default" values for most of the registers.

11

http://www.everest-semi.com/pdf/ES8388%20DS.pdf


The codec.cpp file starts off assigning LABEL Addresses for each of these 53 ES8388 
8-bit registers. Before accessing the registers, however, a few things must be 
configured.  

I2C Interface
First, the I2C interface, used to access the codec registers, must be set up.  In codec.h 
the external library Wire.h is included.  Then, inside the codec.h class declaration, the 
line TwoWire  i2c = TwoWire(0) uses code from the Wire.h library to declare "i2c" as 
an instance of the TwoWire class (the instance name can be anything you want).  

Back in codec.cpp the Codec class Constructor method, Codec( uint8_t _sda, uint8_t
_scl, uint32_t _speed){ ... } is defined to run the TwoWire method i2c.begin after 
getting the two i2c interface pin numbers connected to the ESP32 and its serial data 
speed.  This constructor function will be executed when an instance of the Codec class 
is declared in main.cpp.

The "i2c" TwoWire interface is now available for communicating with the codec 
registers.  The next two methods to be defined are, of course,  those that read from and 
write to the registers,  write_reg(register address, register data) and  
read_reg(register address).  After that, a massive codec initialization method can be 
defined, init( ).  Here all 53 ES8388 8-bit registers are initialized with 53 write_reg( ) 
executions using each of the register address labels defined at the start of the .cpp file 
along with very specific 8-bit input register values. This is your cue to pull out the 
ES8388 data sheet.  

Get and Set Methods
In effect, our Codec code is complete here.  The codec is ready to use; however, it may 
be useful to create a few "set" and "get" methods to allow easier access to some of the 
more useful codec register settings.  These methods are all short and easy involving 
only write_reg( ) or read_reg( ) and a few "if/else" decisions.  Here are the ones that 
might be useful:

• outputSelect( the typedef outsel_t   outsel)
• inputSelect( the typedef insel_t   insel )
• DACmute( bool mute)
• setBitsPerSample( )
• setOutputVolume(uint8_t vol)
• getOutputVolume( )

12



• setInputGain(uint8_t gain)
• getInputGain( )
• setALCmode( the typedef alcmodesel_t   alc )
• mixerSourceSelect( the typedef mixsel_t  LEFT, the typedef mixsel_t RIGHT)
• mixerSourceControl( the typedef mixercontrol_t  mix )
• analogBypass(bool bypass)
• analogSoftBypass(bool bypass, the typedef bypass_mode_t  bm)
• optimizeConversion(int range)
• setMicGain(uint8_t gain)
• getMicGain( )
• setMicNoiseGate(int gate)
• getMicNoiseGate( )

 
Several typedef enums and/or enums are created in codec.h or codec.cpp to make it 
easier to see what data bytes are appropriate to load into what registers.  Several of the 
"set" methods defined in codec.cpp spell out the specific typdef enum to use for data 
input. Look for the specification ending in "_t" in the definition and then look up its 
label list from the typedef enums declared at the start of the codec.h file. This helps 
prevent mistakes. Those "set" methods with specified data typedefs will only accept 
labels from that specific typedef enum.

Other Codecs
This particular Codec Software package was built to work with the ES8388 Codec 
Circuit Board found at https://www.jtalbert.xyz/ESP32/. The original Blackstomp 
Effect Software built a "codec" base class and two derived child classes, one for the 
ES8388, like this one, and another for the AC101 codec. They support two versions of 
ESP32-A1S modules sold by Deeptronic (https://www.deeptronic.com/store/).  The 
ESP32-A1S is an ESP32 module by AI_Thinker with one of two built-in codecs, 
the ES8388 or the AC101.

I have provided untested codec.h and codec.cpp files for the AC101Codec in a 
separate folder.  At the top of the codec.cpp file are some commented out #define 
Labels for ESP32 pin numbers that should work with the Deeptronics ESP32-A1S 
AC101 module.  These would replace those in the file set_settings.h.

For this Codec software package to work with other Codecs the 2 files, codec.h and 
codec.cpp, would need to be changed to fit the different parameters of a different 
codec.  Often times, driver files for a specific codec can be found on the internet in 
project GIT repositories. In any case, the general format of any codec.h and .cpp file 
should be familiar to you since they all include the same general content:

13

https://www.jtalbert.xyz/ESP32/
https://www.deeptronic.com/store/


1.  Construction of a Codec Class.
2.  A  TwoWire  i2c = TwoWire(0) line to instantiate an i2c type object
3.  A  Codec(uint8_t _sda, uint8_t _scl, uint32_t _speed){ ... } 

method to begin the i2c interface. Here it is placed as the Codec 
Constructor method.

4.  A long list of #define CodecRegisterAddress Labels
5.  Two private write_reg( ), read_reg( ) methods used to access the 

codec registers
6.  One public init( ) method to initialize all the Codec Registers. The 

codec tech sheet should have some default, suggested settings.
7.  For convenience, a set of "get" and "set" methods for some of the 

more used registers.
8.  A collection of enum labels and typedef enum labels to help with the

"get" and "set" methods as well as the init( ) method.

A different codec board will have different ESP32 pin connections for the codec i2s 
and i2c interfaces and the physical controllers.  These are all set in the set_settings.h 
file. The escodec( ) function defined in set_codec.cpp executes a number of "set" 
codec methods at the start of the program. You can enter your own list of "set" methods
here with your own input values.  The set_settings and set_codec files also specify 
operational parameters such as sample rate and bits per sample and i2s settings. Make 
sure that they are all correct, and agree with what is being set up in the codec.

Any codec could work with this Software Package for the ESP32 if the above 
considerations are met.  

The Controller Module Files

The controller_mod.h and .cpp file pair sets up one of the most useful features of the 
Blackstomp Audio Effects package.  This file pair builds a base class, called 
controllerModule, that will facilitate the use of ESP32 connected potentiometers, 
switches, and other sensors to control the parameters of an audio effects program.  

Two arrays are created as class attribute members, one for up to 6 potentiometers or 
other analog sensors called control[ ], and another one for up to 4 switches or other 
digital sensors called button[ ].  There is no reason these array sizes can't be expanded 
to allow for any number of controllers if desired.  

14



Control Array
The control[ ] array specifies 8 properties for each of its 6 elements as defined in a 
CONTROL struct:

• String   name;   //a user name to describe what it controls
• CONTROL_MODE   mode;  //modes of operation listed in a typedef enum
• bool   inverted;   //specify a rising or falling controller action direction
• int   min;   //set a minimum value for the controller
• int max;   //set a maximum value for the controller
• int  levelCount;   //range of pot values is zero to this level (2 to 255)
• int   value;   //container for the current value of the controller
• bool   slowSpeed;   //slows down the controller changes
• int   pin;   // the ESP32 pin connection of the controller

These properties are accessed with a dot operation such as:  control[2].min = 2;
or   control[4].value = analogRead(control[4].pin);
 
One of the controller properties, its mode, has 5 possible modes of operation as spelled
out in a typedef enum, CONTROL_MODE.

• CM_DISABLED, //controller not used
• CM_POT, //simple potentiometer action
• CM_SELECTOR,  //selector switch action, with specified number of levels
• CM_TOGGLE, //pot acts like a push button toggle
• CM_MOMENTARY, //pot acts like a momentary push button

Button Array
The button[ ] array specifies 6 properties for each of its 4 elements as defined in a 
BUTTON struct:

• BUTTON_MODE   mode;   //modes of operation listed in a typedef enum
• bool  inverted;   //choose between on/off and off/on for the switch action
• int  min;   //sets a minimum value for the switch, usually 0
• int  max;  //sets a maximum value for the switch, usually 1
• int  value;   //container for the current switch value
• int  pin;   // the ESP32 pin connection of the switch

Like the control[ ], the button[ ] properties are accessed with a dot operation.

One of the button properties, its mode, has 3 possible modes of operation as spelled out
in a typedef enum, BUTTON_MODE.

15



• BM_DISABLED, //button not used
• BM_MOMENTARY, //button up = 0, button down = 1
• BM_TOGGLE, //changes state when pressed and holds it

Several other class data elements are declared.  "String name" can be used to give a 
name to your effect program.  INPUT_MODE, ENCODER_MODE, and 
BLETERMINAL were used in the original package but not here.

Methods
Several controller methods, referred to as "event handlers", are declared:

onControllerChange( controlIndex )
onButtonChange( buttonIndex )
onButtonPress( buttonIndex )
onButtonRelease( buttonIndex )
onBleTerminalRequest( )  (Bluetooth capabilities left out of this package)

The keyword "virtual" is attached to each of these "event handler" methods which 
means that the function will be defined in detail only by the user in a descendant child 
class, not here in the base class where it is just declared.  As you may expect from this, 
there is no mention of these methods in the controller_mod.cpp file.  An init( ) 
method is also one that must be defined by the user in the descendant class, not here.  
These methods will be defined later in the file set_module.cpp.

The only function defined here in controller_mod.cpp is the class constructor which 
is run later, when an instance object of a controllerModule class descendant is 
declared.  Its job is to initialize all the button and control properties for that instance 
object, setting them up as DISABLED.

Controllers
As you may suspect by now, the controller_mod files are only a preamble to the
whole controller story. There are 3 other controller components in 3 other files. These
are programmed by the user and are constructed to achieve whatever audio effect the
user is trying to create.  They will be changed for different programmed effects.

1. All the physical controllers used will be set up in detail in the 

16



set_module.h and .cpp files which also define a controller_mod 
init( ) function and button/control "event handler" methods.  

2. Task functions defined in task.cpp will continuously watch, or poll, all 
the controller connected ESP32 pins and keep their value updated and 
adjusted to the requested mode of operation and other controller 
properties. 

3. Finally, in main.cpp, the data emerging from all the above controller 
processes is applied to the parameters of some amazing audio effect.

The controller devices will operate at three levels in three files as summarized here:

1. As described here, a base level controller class called 
controllerModule was built in the file controller_mod.cpp  The 
class attributes include two arrays: control[ ] and button[ ].  Pots 
and other analog sensors are represented in the six element array 
control[ ].  Each control[ ] element is given 8 properties.  Switches
and other digital sensors are represented in a four element array 
button[ ].  Each button[ ] element is given 6 properties.  Four 
virtual event handler methods and an init( ) method are declared in
the class.  A class constructor method is defined to initialize all the 
control[ ] and button[ ] properties.

2. A descendant child class of controllerModule called 
controller_module is declared in the file set_module.h with the 
line  class controller_module:public controllerModule{ }. The file
set_module.cpp then defines in detail this child class' attributes and
methods.  Attributes such as the button[ ] and control[ ] element 
properties, and methods such as init( ) and event handlers.  

3. An actual instance of the controller_module child class called 
myPedal is created in the file set_module.cpp with the line   
controller_module *myPedal = new controller_module();  This 
myPedal object is defined as a pointer so that its elements are 
accessed using the -> arrow operator.  myPedal-> is used in the 
main.cpp effect process and in the file task.cpp's button and 
control tasks.

More details in the sections to follow.

17



The Task File

The task.cpp file builds several functions labeled as "tasks" and one all-important 
taskSetup( ) function that starts them all up.

ControlTask
The controltask( ) function continuously polls all the enabled physical controllers 
(pots) in control[i] performing the following operations: 

• executes  analogRead(myPedal->control[i].pin) 
• adjusts the read controller value according to the specified mode of 

operation,  myPedal->control[i].mode
• loads the adjusted value into  myPedal->control[i].value
• finally calls the event handler function  myPedal->onControlChange(i)

The ESP32 analog input ADC pins are 12-bit with values that range from 0 to 4095.  
The controltask( ) in the file task.cpp will knock that range down to whatever is 
specified by the user in control[ ].level, usually 127 or 255.  The taskSetup( ) function
will limit the level to 255, no matter what the user specifies, though that can easily be 
changed.  When control[ ].mode specifies a selector switch or pushbutton type of pot 
action, the user can set a drastically lower "level" such as 2 or 3.  This level cut back 
from the 12-bit 4095 helps to stabilize the control value.  That along with some 
hysteresis adjustments within controltask( ) will remove most annoying jitters in the 
control value when the pot is left sitting in one position.  Note that the max, min and 
slowSpeed parameters are not currently employed in the controltask( ).

ButtonTask
The buttontask( ) function performs a similar continuous polling of all the enabled 
switches in button[i]:

• executes a  digitalRead(myPedal->button[i].pin)
• adjusts the read controller value according to the specified mode of 

operation,  myPedal->button[i].mode  along with some debouncing
• loads the adjusted value into   myPedal->button[i].value
• finally calls the event handler function  myPedal->onButtonChange(i)

The buttontask( ) will make adjustments to the polled digital pin value.  The 
button[ ].mode parameter can specify a momentary or toggle switch type action.  All 
physical switches exhibit a short burst of noise when making a transition, bouncing on 

18



and off the switch contact before settling down.  The buttontask( ) thankfully includes
a "debouncing" routine to get rid of this noise. Note that  buttontask( ) does not 
currently utilize the max and min parameters. It also does not include a convenient 
"name" parameter for display by the system monitor.  This can easily be changed in the
code.

System Monitor Task
A System Monitor (sysmon_task( )) task will display real-time changes in the 
button[ ] and control[ ] values at an update rate of around one second.  It can also 
display audio processing and CPU load info.  CPU load info employs a collection of 
nine "tick" variables which are declared in the file set_settings.h and defined at the 
start of this task.cpp file.  To engage this processing and CPU data these "tick" 
variables must be carefully arranged inside the audio processing code in main.cpp.  An
example of this will be provided.  

The "tick" variables also illustrate a coding method that avoids some common compile 
errors. The variables are "declared" in the set_settings.h file which is  #included in the 
main.cpp file that uses them.  The "extern" keyword must be attached to the start of 
each variable declaration in that .h file.  The task.cpp file then "defines" the same list 
by repeating it without "extern". The list is defined at the start of the task.cpp file 
prior to the task functions that use them.  

The sysmon_task( ) also offers a useful debug feature.  The functions setDebugStr( ) 
and setDebugVars( ) can be used to load up to 4 program variables or a message from 
anywhere within the program code.  The results are displayed using sysmon_task( ).

Another Monitor task, runScope( ) can display a signal on the Arduino IDE's serial 
plotter.

FreeRTOS
The controltask( ) and buttontask( ) are set up to run continuously, always watching 
for user controller actions programmed to alter the processed audio streams in some 
way.  To create this continuous action both functions set up an infinite loop with 
"while(true) { }".  However, they must be programmed somehow for real-time 
response while running at the same time.  The user must feel that any button press or 
knob turn has an immediate effect in spite of these two and other tasks all competing for 
processor time.  The main programming tool for creating this real-time response is 
FreeRTOS (Free Real Time Operating System).  The ESP32 development board comes 
with FreeRTOS firmware already installed. The Arduino IDE supports this as well. 
FreeRTOS is a Real-time Operating System used to run multiple tasks individually in 

19



sequence while making them appear to run simultaneously. This firmware allows the 
ESP32 board to multitask. Both tasks described above use FreeRTOS commands to 
improve responses to user input.

This is how it's accomplished.  Since the human reaction time is relatively slow, around 
150 ms, the tasks can be slowed down to allow other tasks to do their thing without 
affecting the perceived user response time.  This is done with an RTOS Delay command
at the start of each task's infinite while(true) loop.  Both controltask( ) and 
buttontask( ) use the RTOS command "vTaskDelay(1)", a delay of about 1ms, at the 
start of their respective loops. Unlike the Arduino delay( ) command, vTaskDelay() is a 
non-blocking delay; it lets other tasks continue working while the one task is idling.

Another great illustration of vTaskDelay( ) is in the simple framecounter_task( ) 
shown below.  This is another infinite loop that runs concurrently with buttontask( ) and
controltask( ).  Each time the audio processing loop (to be described later) finishes 
processing a bank of audio samples, called a frame, the processedframe counter will be 
incremented.  The framecounter_task's job is to capture this counter value, save it to 
the variable audiofps (audio frames per second) for display by the sysmon_task( ), and 
then reset the processedframe counter back to zero.  This must happen only once every 
1000 msec. (1 second -- for frames per second) and that is easily accomplished with the 
RTOS delay command vTaskDelay(1000).

void framecounter_task(void* arg)  //Only useful for the System Monitor
{
  while(true)
  {
    audiofps = processedframe;
    processedframe = 0;
    vTaskDelay(1000);
  }
}

The original Blackstomp Effect package included a blinktask( ) as part of an 
ledindicator class, which were dropped in this version.  These made even more extensive
use of RTOS.  They used the interesting Semaphore construct. An RTOS Semaphore 
is a type of shared permit to access the processor.  A class method must check on its 
"availability" before it can "Take" it, perform whatever it needs to do, and then "Give" it 
back.

taskSetup
The final function to discuss in the task.ccp file is the one that pulls everything together,
taskSetup( ).  It starts off with a simple check of controller pot properties in control[i].  
It will correct any unreasonable settings made by the user in set_module.cpp.  It then 
starts up the three tasks discussed above with the following lines:

20



//decoding button presses 
  xTaskCreatePinnedToCore(buttontask, "buttontask", 4096, NULL, 
AUDIO_PROCESS_PRIORITY, NULL,0);

  //decoding potentiometer and other analog sensors
  xTaskCreatePinnedToCore(controltask, "controltask", 4096, NULL, 
AUDIO_PROCESS_PRIORITY, NULL,0);

  //audio frame monitoring task used by systemMonitor
  xTaskCreatePinnedToCore(framecounter_task, "framecounter_task", 4096, 
NULL, AUDIO_PROCESS_PRIORITY, NULL,0);

These program lines require a bit of explanation:

The ESP32 microprocessor has one very useful feature. It actually has two processor 
cores that allows two program threads to run simultaneously.  The 
xTaskCreatePinnedToCore( ) is an RTOS Library function used to set up specific 
tasks (functions) to run in one of the two ESP32 cores.  The last argument "0" in the 
xTask functions above indicates that these three tasks are assigned to the ESP32 Core 0 
processor.  Several other tasks defined in task.cpp are also assigned to Core 0, such as 
sysmon_task( ) and scope_task( ).  

The only task assigned to ESP32 Core1 is the one which manages the audio data streams
to and from the codec. The processing of the audio data streams is extremely processor 
intensive and time sensitive. In this way the user controller functions, on the other core, 
will never interrupt the audio into and out of the codec ADCs and DACs. 

The original Blackstomp Effect package set up an i2s_task( ) to manage the audio data 
stream to and from the codec from within a controller class process( ) method, and used 
xTaskCreatePinnedToCore( ) to assign it to the Core 1 processor.   

In this pared down version of the Blackstomp package the audio processing code is 
simply put directly within the main loop of main.cpp.  This file's main loop code is 
automatically assigned to the Core 1 processor by the compiler.

21



The Set Files

The program files covered up to this point can, in general, be set in stone. They will 
not need any changes, even as different audio effects are explored by the programmer.  
However,  the program files to be explored now are central to generating different code
for different effects.  These files are as follows.  Note that the convention of creating 
file pairs is followed with .h file declarations and .cpp file definitions.

set_codec.h
set_codec.cpp
set_settings.h
set_settings.cpp
set_module.h
set_module.cpp
main.cpp

Set Codec
The set_codec files deal exclusively with the Codec class created in the codec.h/.cpp 
files.  set_codec.h starts off declaring an instance of the Codec class called codec.  

extern Codec codec;

Note the "extern" keyword at the beginning of the codec object declaration used to 
avoid "multiple definition" compile errors.  The codec_sets( ) function is also declared.
The set_codec.cpp file reveals exactly what that function does; it basically executes a 
number of codec "set" functions.

set_codec.cpp then defines the codec object with the line:

Codec codec(ES8388_SDA, ES8388_SCK, 400000);

This is actually the Codec Class Constructor method defined in codec.cpp.  It will 
execute the i2c.begin( ) function.  i2c is the instance of the TwoWire class declared in 
codec.h.   "begin( )" is a method found in the TwoWire library Wire.h, #included in 
codec.h   Before running, it needs the two ESP32 pin numbers for the i2c serial 
interface and the serial interface speed.

Now that the codec and i2c objects are up and running, the user can call any of the 
convenient functions built in codec.cpp to change specific Codec settings.  This is 
exactly what codec_sets( ) does.  It runs ten Codec "set" functions and is executed in 
the setup( ) section of main.cpp.  Check the comments included in the definition for 
an easy reference to the codec setup possibilities.  

22



Codec set functions can easily be used within the effects code.  For example, a toggle 
pushbutton can be set up to either mute or bypass an audio effect with the simple code 
here:

if(button[0].value) 
      {
        //codec.analogBypass(true);
        codec.DACmute(1);
        digitalWrite(LED1, HIGH);
      }

Set Settings
The set_settings.h file starts off attaching all-cap labels to several integer constants 
using #define.  These are preprocessor directives.  All #define label references in the 
program will be replaced with the assigned integer.  Many important code values are 
set here such as sample-rate, bits-per-sample, number of audio channels, ESP32 pin 
numbers for all the pot and switch connections, ESP32 pin numbers for the i2c 
interface and the i2s codec interface, audio processing settings for DMA size and 
Framesize.  

Next, the "tick" variables used by sys_mon( ) to display CPU and processing loads are 
all declared here, to be defined later at the start of the file task.cpp.  

Finally, set_settings.h declares the I2S_init( ) function. This function is defined in 
detail in set_settings.cpp and executed in the setup( ) of main.cpp.  Here are its main 
components:

1.  i2s_config  This typedef enum specifies 11 i2s interface 
settings.  Some of these are automatically set using  #define labels 
such as SAMPLE_RATE, BITS_PER_SAMPLE, 
DMA_BUFFERCOUNT, and DMA_BUFFERLENGTH.  The 
other settings can be left as is, unless the user wants to dig into the 
i2s library to find out what they actually do.    

2.  pin_config This typedef enum uses #define labels to 
configure the ESP32 pins connected to the codec's i2s interface 
connections.

3.  PIN_FUNC ... I2S configure, cryptic commands mainly to set 
the I2S master clock to GPIO 0 

4.  i2s_driver_install( ) I2S driver initialized using i2s_config 

23



5.  i2s_set_pin( ) I2S pin connections set using pin_config 

6.  i2s_set_clk( ) Bit clock settings using constants found in 
set_settings.h

A warning is appropriate at this point.  The two set_settings files are critical. Even 
though they won't need to be changed very often, even a single wrong setting can 
prevent the whole effects package from working.  Be forewarned.

Set Control
We are now finally at the level where you can start coding your own special effects.  
The set_module files will make the connections between your signal processor and all 
external pots, switches and other sensors.  

   Set Control Header
With the following lines the set_module.h file makes two important code declarations:

class controller_module:public controllerModule 
{
  public:
  float gain;
  float gainRange; 
  void init();
  void onButtonChange(int buttonIndex);
  void onControlChange(int controlIndex);
};

//controller_module myPedal declaration with extern
extern controller_module *myPedal ; 

It first creates a child class called controller_module derived from the base controller 
class, controllerModule, which was built in the controller_mod files.  Within the 
class brackets are those base controllerModule methods that will be needed for your 
particular effect application. Here you must also include any additional class attribute 
variables needed in the effect, most often to hold the values read off the pots and 
switches. A child class inherits all the elements of the base class but you can also 
expand it with elements of its own such as these new effects attributes.

In the final line an instance object called myPedal is created from the child class 
controller_module.  In actuality, myPedal is declared as a pointer to the instance 

24



object. This will make the code a bit easier to read.  The access operator for myPedal 
as a pointer will be "->" while the simple dot is the access operator for the different 
properties of control[ ] and button[ ].  As an example, accessing a pot value will look 
like  myPedal->control[3].value.

   Set Control CPP
The file set_module.cpp will flesh out the details of this new child class, 
controller_module, but first it defines myPedal, which was only declared above in the
header file.  This will immediately trigger the controllerModule Constructor method 
from controller_mod.cpp which initializes all the members of control[ ] and 
button[ ]. Specifically, all the member mode's are set to DISABLED.

controller_module *myPedal = new controller_module();

   Set Control Init( )
The first controller_module class method defined is init( ).  Here we can start off 
giving our effect an actual name.  Our example effect here is "Gain Doubler" which 
will provide simple signal amplitude control.  Next, the init( ) is a convenient place to 
configure any ESP32 pins connected to switches as inputs with pullup resistors, and 
any ESP32 pins connected to LEDs as digital outputs.

  pinMode(LED1, OUTPUT);
  pinMode(LED2, OUTPUT);
  pinMode(KEY1, INPUT_PULLUP);  //internal pullup
  pinMode(KEY2, INPUT_PULLUP);      

Next, within init( ), the properties of the class attributes control[ ] and button[ ] are 
defined.  If you remember, the class Constructor method initializes all these properties 
making all the controls and buttons inactive.  That means we only have to enable and 
set up one button and two controls since that is all the controllers used in this effect 
pedal.

//setting up the buttons
  button[0].mode = BM_TOGGLE;
  button[0].pin = KEY1;

  //add gain control
  control[0].name = "Gain";
  control[0].mode = CM_POT;
  control[0].levelCount = 128;
  control[0].pin = POT1;

  //add range control

25



  control[1].name = "Range";
  control[1].mode = CM_SELECTOR;
  control[1].levelCount = 3;
  control[1].pin = POT2;

  gain = 1.0;
  gainRange = 1.0;

Note that many of the control[ ] and button[ ] properties are not implemented either 
here or in the controltask( ) and button( ) functions. They are available for future use.
The control[ ] and button[ ] properties set up in init( ) are directly used by 
buttontask( ) and controltask( ) in the file task.cpp.  In fact, this init( ) method is 
executed in main.cpp right before taskSetup( ) which starts up the button and control 
tasks.  

Note also that the two extra class attributes gain and gainRange are defined within 
init( ).

   Set Control Event Handlers
After adjusting the pot and button values according to their respective mode and 
levelCount properties, the button and control tasks send out their final controller value 
to the methods onButtonChange( ) and onControlChange( ).  What happens inside 
these two methods is defined next within the file set_module.cpp.  

void controller_module::onButtonChange(int buttonIndex)
{
  switch(buttonIndex)
  {
    case 0: //main button state has changed
    {
      if(button[0].value) //effect activated
      {
        //codec.analogBypass(false);
        codec.DACmute(0);
        digitalWrite(LED1, HIGH);
      }
      else //effect muted
      {
        //codec.analogBypass(true); 
        codec.DACmute(1);
        digitalWrite(LED1, LOW);
      }
      break;
    }
  }
}

In the above onButtonChange( ) method the switch/case steps through each of the
hardware pushbuttons used in this effects box (only one in this case) and sets an ac-
tion for each of them. The one switch will turn off and on the codec Mute mode (or

26



Bypass) and set an LED as an indicator light. 

void controller_module::onControlChange(int controlIndex)
{
  switch(controlIndex)
  {
    case 0:
    {
      gain = (float)control[0].value/127.0;
      break;
    }
    case 1:
    {
      if(control[1].value==0)
        gainRange = 1;
      else if(control[1].value==1)
        gainRange = 2;
      else gainRange = 3;
      break;
    }
  }
}

In the above onControlChange( ) method the value from the "gain" pot is converted
to a float and then divided by 127 resulting in a fractional value between 0 and 1.
The other pot is used for "gainRange". In init( ) it was configured in CM_SELEC-
TOR mode with 3 levels. As such it will act like a 3 position selector switch, with the
gainRange attribute values of 1, 2, or 3. These two object variables, myPedal->gain
and myPedal->gainRange, will then be used in the actual signal processing loop
within main.cpp to affect the signal volume.

To summarize, the init( ) method is defined mainly to set up the control[ ] and but-
ton[ ] properties used in buttontask( ) and controltask( ) to adjust the values read
from the ESP32 controller pins. The two event handlers, onButtonChange( ) and
onControlChange( ), use the final button[ ].value and control[ ].value to affect the
signal processing either directly through codec methods or indirectly through created
processing variables. 

The Main.cpp File

The main.cpp file stands apart from all other files.  It takes the place of the main( ) 
function found in most C/C++ programs.  As such, it is considered by the compiler to 
be the programming entry point, the first method that will get executed by the 
compiler. All the file content described up to this point serves only as input support to 

27



main.cpp.  All previously defined methods await execution only from within main( ). 
In general, no function can be called from outside of main.cpp.  

One exception to this rule is the Class Constructor.  This special function is 
recognizable by having the same name as the Class.  The Constructor  method is called
immediately upon instantiation of a Class Object. It is usually used to set up all the 
variables and other arguments of an instance object upon its creation.

Since we are programming in an Arduino Framework from the PlatformIO IDE the 
main.cpp file has the same format as an Arduino sketch file (labeled with the .ino 
extension in the Arduino IDE but with the .cpp extension here). It includes two main 
functions, one called setup( ) and another called loop( ). The first is called one time 
only at the start of the program. The second is called repeatedly in an infinite loop as 
the program continues.  

Includes
Preceding setup( ) within the main.cpp file are a number of #includes:

#include <Arduino.h>
#include "set_settings.h"
#include "set_module.h"
#include "set_codec.h"
#include "task.h"

#include <Arduino.h>  is needed because the Arduino IDE is not being used. Without it 
the compiler would not recognize various Arduino constant labels like HIGH, LOW, 
INPUT_PULLUP and such.  Note that all three "set" files described above are in the 
#include list along with the task file.  

Setup( )
The setup( ) function within main.cpp is the official program start point.  Within 
setup( ) several functions are executed that initialize and startup the codec and its two 
interfaces -- I2C, used to load the codec registers, and I2S, used to control the audio 
data flow.  Some of this work, however, has already been initiated within various Class
Constructor methods.  Here is a list of startup function calls and the location from 
which they were called:

1.  TwoWire i2c = TwoWire(0);  Codec.h/Class Codec                 
Instance of TwoWire created, i2c.  Constructor of TwoWire is run 
from included Wire( ) library?

2.  Codec codec set_codec.h                            

28



Instance of Codec created, codec.  No Constructor method without 
input parameters is defined.  An "overload" constructor with input 
parameters runs elsewhere (see #3).

3.  Codec codec(...) set_codec.cpp                       
Overloaded Constructor is called, codec(ES8388_SDA, 
ES8388_SCK, 400000). Defined in Codec.cpp. The Constructor, 
in turn, runs TwoWire i2c.begin( ).

4.  codec.init( ) setup( )/main.cpp                            
Method found in Codec.cpp. Initializes all 53 ES8388 registers

5.  codec_sets( )  setup( )/main.cpp                            
Method found in set_codec.cpp. Some special Codec registers are 
overloaded using methods defined in Codec.cpp.

6.  I2S_init( ) setup( )/main.cpp                 
The function that initializes the i2s interface defined in 
set_settings.cpp

7.  controller_module *myPedal   set_module.h, .cpp       
Instance of child class controller_module is created as the pointer 
"myPedal".  Constructor method found in controller_mod.cpp is 
run initializing control[6] and button[4] arrays.

8.  myPedal->init( ) loop( )/main.cpp                                
User created init( ) called, defined in set_module.cpp.  Sets up the 
needed control[ ] and button[ ] parameters.

9.  taskSetup( ) loop( )/main.cpp                              
Defined in task.cpp.  Performs some control[ ] parameter checks 
and then starts up controltask, buttontask( ) and 
framecounter_task( ) in processor core 0. 

  
The setup( ) function also starts up the Serial Monitor with "Serial.begin(115200);" 
During startup several messages are sent out to the monitor to let the user know 
everything is starting off well.  If desired, the setup( ) function can run the System 
Monitor task with runSystemMonitor( ).  It will start up sysmon_task( ) placing it in 
processor core 0 along with the button, control and framecounter tasks.

29



Loop( )

The loop( ) function within main.cpp is the heart of the effects pedal program.  The 
signal processing code for the effect is contained in loop( ) within an inner loop bound 
by the brackets of while(1) {  ...  }.  Code inside the loop( ) function is automatically 
assigned by the compiler to Processor Core 1.

Before the inner loop is entered, all buffers and floating point variables used in the 
signal processing code are defined.  It is important to make sure that the bit settings 
int16_t defined here for the two buffers agree with the same settings as 
BITS_PER_SAMPLE set in the set_settings.h file (except for the 24 bits setting 
which is a special case described later).  Also, note that the myPedal init( ) method 
(see set_module.cpp) is called once along with the taskSetup( ) function (see 
task.cpp) before the inner loop starts.  

Direct Memory Access (DMA)

Signal processing within the inner while(1) loop is based upon an I2S interface 
working in conjuction with a DMA (Direct Memory Access) processor built into the 
ESP32.  Though much of the complex details of this action is hidden behind the 
scenes, a basic understanding is useful.  

DMA allows the codec DACs and ADCs to access a block of system memory without  
involving the ESP32 processor.  A master clock will time the loading of audio samples 
one at a time at the designated SAMPLE_RATE into a DMA Rx block of memory 
from the ADC. At the other end, samples waiting in another DMA Tx block of memory
will be loaded to the DAC one sample at a time at the same designated 
SAMPLE_RATE.  These transfers between the memory and the converters are 
supposedly initiated by the processor but the actual transfer is all taken care of by the 
DMA, leaving the processor free. 

In-between the DMA Rx holding ADC samples and the DMA Tx holding DAC 
samples lies the user's signal processing. The function i2s_read( ) collects a "frame" of
samples from the DMA Rx storing them in the user buffer rxbuf[ ].  The #define label 
FRAMELENGTH sets the number of samples collected in a frame.  Signal 
processing code then works on the samples one sample at a time, moving the processed
sample to user buffer txbuf[ ] when done.  Finally, after processing all the samples in 
the frame, the function i2s_write( ) moves the data in the txbuf[ ] to the DMA Tx.

 Here is a block diagram of the process.

30



Both the ADC and DAC are being clocked at the sample rate. The figure shows the 
ADC samples being routed to the DMA buffer Rx1, while the samples feeding the 
DAC come from DMA buffer TX1.  The DMA allows peripherals like the ADC and 
DAC to directly access system memory without involving the CPU while it also acts as
a kind of memory traffic control. 

When the Rx1 buffer is full the DMA will flip the two switches at the ADC end of the 
figure to now send ADC samples to the Rx2 buffer and connect the user rxbuf to the 
full Rx1.  The CPU will supposedly receive an interrupt to initiate transfer of the Rx1 
buffer to the user rxbuf using the function i2s_read( ).  In a similar fashion, when Tx1 
is empty the DMA will flip the two switches at the DAC end of the figure.  The DAC 
will now receive samples from the Tx2 buffer while a CPU interrupt initiates emptying
the txbuf into Tx1 using the function i2s_write( ).  

After an i2s_read( ) operation the audio samples in rxbuf[ ] are processed for a 
specific audio effect, one at a time, and then loaded into txbuf[ ].  Finally, when the 
entire "frame" of samples have been processed and loaded into txbuf[ ], the operation 
i2s_write( ) can be executed to load the processed samples into a DMA Tx buffer.

The user sets up the DMA buffers using two #define constants, 
DMABUFFERLENGTH and DMABUFFERCOUNT.  These values are configured 
by the user in set_settings.h and used by i2s_config in the file set_settings.cpp.  The 
buffer length is the size in bytes of each DMA buffer. The buffer count is the number 
of these buffers available to the DMA. The figure shows 2 buffers at the ADC and 2 at 
the DAC.  From the operation described above you can see why at least two are 
required at each end, though more could be assigned by the user.  The total DMA 

31



memory used is given by the following formulas:

 DMABUFFERLENGTH * DMABUFFERCOUNT * BITS_PER_SAMPLE/8 * CHANNEL_COUNT
 Total memory must not exceed 4092

Actual DMA buffersize is
 DMABUFFERLENGTH * BITS_PER_SAMPLE/8 * CHANNEL_COUNT

  Set a lower size for low audio signal latency between input and output
 Set a higher size for less CPU interrupt involvement.

  DMABUFFERLENGTH must be a value between 8 and 1024 in bytes.
  DMABUFFERCOUNT must be at least 2.
 

A third #define constant, FRAMELENGTH, defines the number of audio samples 
collected, called a "frame",  for signal processing.  This value is used to set the size of 
the user buffers rxbuf[ ] and txbuf[ ].  It must be equal or greater than 
DMABUFFERLENGTH * CHANNEL_COUNT.  

In practice, there seems to be a lot of leeway in the above value settings.  I've had luck with 
DMABUFFERLENGTH = 64, DMABUFFERCOUNT = 2, FRAMELENGTH = 256.  
There is still a lot of uncertainty in the tech sources.  CHANNEL_COUNT is actually called 
slot_num.  Does that stand for ADC plus DAC channels so that a stereo in and out would 
require DMABUFFERCOUNT = 4?  The spec sheet also says this:  "The receiving buffer 
that is offered by user in i2s_read should be able to take all the data in all dma buffers, that 
means it should be bigger than the total size of all the dma buffers"  That seems excessive 
given what actually works in practice.  

For a more detailed examination of I2S for the ESP32 go to the Espressif site at 
https://docs.espressif.com/projects/esp-idf/en/v4.4.3/esp32/api-reference/peripherals/
i2s.html

The DMA description above was gleaned from many fragmented, incomplete sources. 
My hope is that it is mostly correct in spite of some fuzziness around the edges.  For 
example, it is not clear to me when exactly the CPU/DMA interrupts occur and exactly 
what the interrupt routines do.

32

https://docs.espressif.com/projects/esp-idf/en/v4.4.3/esp32/api-reference/peripherals/i2s.html
https://docs.espressif.com/projects/esp-idf/en/v4.4.3/esp32/api-reference/peripherals/i2s.html


The Effect Programs

gainDoubler 16-bit
Below is the complete inner while(1) loop containing the code for the simple 
gainDoubler audio effect.

 while(1)
{ 
  i2s_read(I2S_NUM_0, rxbuf, FRAMELENGTH*2, &readsize, 20);
  
  for (int i=0; i<(FRAMELENGTH); i+=2) 
   { 
    rxl = (float) (rxbuf[i]) ;   //convert samples to float
    rxr = (float) (rxbuf[i+1]) ; 

    txl = myPedal->gain * myPedal->gainRange * rxl;  
    txr = myPedal->gain * myPedal->gainRange * rxr;

    txbuf[i]   = ((int16_t) txl) ; //convert samples back to integer
    txbuf[i+1] = ((int16_t) txr) ;
   }
  
  i2s_write(I2S_NUM_0, txbuf, FRAMELENGTH*2, &readsize, 20);
} 

This is simple amplitude control of a 16-bit audio signal.  It starts off with i2s_read( ) 
loading rxbuf with FRAMELENGTH number of samples from a DMA Buffer Rx 
filled by the ADC under DMA control.  Since the samples are 16 bits or 2 bytes 
(BITS_PER_SAMPLE = 16) and i2s_read( ) reads a byte at a time, it must read a 
total of FRAMELENGTH*2 bytes.  The signal is stereo (CHANNEL_COUNT = 2) 
so the incoming samples alternate between left and right channels.

A "for" loop will step through the frame of samples one at a time.  The sample is first 
converted to a floating point number and placed in a temporary holding float variable, 
rxl for left channel and rxr for right channel.  Floating point math usually has a severe 
negative effect on CPU performance time but, amazingly, the ESP32 has a built-in 
FPU (Floating Point Unit) which provides acceleration on single precision floating 
point arithmetic. There are reports of some restriction when using FreeRTOS but only 
the Core 0 processor is using RTOS, not Core 1 in this main loop.

The middle two lines are the actual signal processing code:

txl = myPedal->gain * myPedal->gainRange * rxl;  
txr = myPedal->gain * myPedal->gainRange * rxr;

The variables gain and gainRange are derived from two pot values, as defined in the 

33



file set_module.cpp.  The variable "gain" has been adjusted to result in a floating 
fractional value between 0 and 1.  The "gainRange", also defined in set_module.cpp, 
comes from a 3-selector switch pot with values 1, 2, and 3.  These are all multiplied 
with the left and right signal samples for a super simple amplitude control.

The processed right and left float values are then converted back to 16-bit integers 
(int16_t) and loaded into the txbuf. 

When the "for" loop is finished processing the entire frame's collection of samples, the
i2s_write function is ready to load them all into a DMA Tx buffer to be fed to the 
DAC output at the SAMPLE_RATE under DMA control.

Timing is critical here. The i2s_write( ) function must happen before the Tx buffers go
empty from the DMA constantly feeding the output DAC; and the i2s_read( ) function 
must happen before the Rx buffers are completely filled from the DMA constantly 
feeding them input ADC samples. An overflowing Rx buffer or an empty Tx buffer can
be prevented by careful settings of DMABUFFERLENGTH, 
DMABUFFERCOUNT, and FRAMELENGTH, and, of course, by keeping the 
signal processing time as short as possible.

gainDoubler 24-bits
The above effect example uses 16-bit samples at a sample rate of 44,100KHz.  This is 
the standard CD quality format. For a higher quality formats 24-bit sampling is often 
used.  24-bit samples can be accommodated in the software with one caveat, c++ has 
no int24_t  integer type. Here is how you get around this problem.

1.  The rxbuf[ ] and txbuf[ ] must be set to int32_t (4 byte samples) in 
the files main.cpp and set_settings.h.

2.  In set_settings.h, set BITS_PER_SAMPLE (24).  The function 
codec.setBitsPerSample( ) uses BITS_PER_SAMPLE to 
automatically send the codec the command 
write_reg(Codec_ADCCONTROL4, 0X20).

3.  Set up i2s_read and i2s_write to handle 4 byte samples with the 
input parameter FRAMELENGTH*4. This will result in an extra 
zeroed byte in the least significant byte position.

4.  After i2s_read, shift out this zero lower byte to convert to a 24-bit 
sample.  Before i2s_write, shift 8 zero bits back into the lower byte
to convert back to a 32-bit sample.

34



Here then is the main.cpp while(1) loop code for a 24-bit gainDoubler effect:

while(1)
{
  i2s_read(I2S_NUM_0, rxbuf, FRAMELENGTH*4, &readsize, 20);
  
  for (int i=0; i<(FRAMELENGTH); i+=2) 
   {  
    rxl = (float) (rxbuf[i] >> 8) ;   
    rxr = (float) (rxbuf[i+1] >> 8) ; 

    txl = myPedal->gain * myPedal->gainRange * rxl;  
    txr = myPedal->gain * myPedal->gainRange * rxr;

    txbuf[i]   = ((int32_t) txl) << 8 ; 
    txbuf[i+1] = ((int32_t) txr) << 8 ;
   }
  
  i2s_write(I2S_NUM_0, txbuf, FRAMELENGTH*4, &readsize, 20);

} // End of while(1) loop

This simple effect gainDoubler was used to better reveal the basic components 
required for any effect program.  Physical controllers are configured in the set_module
files, and the actual effect code is found in main.cpp at the center of the while(1) loop.
The code before and after the effect processing code, code that includes i2s_read, 
i2s_write, txbuf[ ] and rxbuf[ ], can remain basically the same no matter what effect is
coded.

Note that amplitude control doesn't have to happen at the sample level.  An easier 
method of gain control would be to use the codec function 
codec.setOutputVolume(gain) within onControlChange( ).  Make "gain" vary 
between 0 and 33 with  control[0].levelCount = 33;  Both settings are made within 
set_module.cpp.

BSDSP DSP Files
More involved effects can take advantage of the three Blackstomp Digital Signal 
Processing files -- bsdsp.h, bsdsp.cpp, and dsptable.h.

dsptable.h contains a 256 element sine-wave table.  sine_table[ ] covers a full 
wavelength in floating point fractional values ranging from +1 to -1.  Also included for
filters is a hann_table[ ], 256 floating point fractional values ranging from 0 to +1.

The following DSP classes are defined in the bsdsp files:

35



biquadFilter --  A direct-form-2 biquad iir filter.

oscillator -- Creates an oscillator from a 256 element table of one 
waveform cycle.  It can use any built waveform table including the 
sine_table[ ] from dsptable.h

fractionalDelay -- Implements a delayed output by building a circular 
sample buffer sized for a given maxDelayInMs.  You can then 
request a sample read at any delay value up to the maxDelay.  

waveShaper  -- Applies a transfer function from 
transferFunctionTable[ ] to the input stream.  This is a default 
exponential function but any 256 element array could be used.

rcHighPass -- A simple RC High Pass Filter with variable cutoff 
frequency.

rcLowPass -- A simple RC Low Pass Filter with variable cutoff 
frequency.

simpleTone -- A simple Bandpass Filter using rcHighPass and 
rcLowPass.

noiseGate -- A Noise Gate with Envelope and Threshold controls.

lookupLinear( ) -- A function used whenever a table lookup is 
implemented in any of the above dsp classes. It can interpolate a 
fractional index into a table.  Value = table[integer part of index] + 
(fractional part of index) * (table[index + 1] - table[index]).

Stereo Chorus 24-bit
What follows is an example of a "Stereo Chorus" effect that uses several of the bsdsp 
file's DSP effect classes.  To start off, here is the set_module.h file:

#ifndef MODULE_H_
#define MODULE_H_

#include "controller_mod.h"
#include "bsdsp.h"

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

36



//~~~~ DSP Class Declarations (bsdsp files) ~~~
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 extern fractionalDelay delay1;
 extern fractionalDelay delay2;
 extern oscillator lfo1;
 extern oscillator lfo2;

//Create a child class derived from controllerModule 
//controller_module sets all Pot, Switch, and LED pin, mode, and actions

class controller_module:public controllerModule 
{
  public:
  float depth;
  float freq; 
  float beatFrequency;
  float phaseDiff;
  bool asynch;
  bool stereo;

  void init();
  void onButtonChange(int buttonIndex);
  void onControlChange(int controlIndex);
};

//controller_module myPedal declaration with extern
extern controller_module *myPedal ; 

#endif

Note the #include "bsdsp.h line. Two instances of the DSP fractionalDelay Class
and two instances of the DSP oscillator Class are declared -- delay1, delay2, lfo1,
lfo2. Four controller variables are declared for depth, freq, beatFrequency, and
phaseDiff. Two boolean switch variables are declared for asynch and stereo. As you
can see, just this short header file lists all the basic controller components of the
effect.

Next is the set_module.cpp file where all the elements declared above are defined in
detail.

#include "set_module.h"
#include "set_settings.h"
#include "set_codec.h"

//controller_module myPedal definition
controller_module *myPedal = new controller_module();

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//~~~~ DSP Class Definitions (bsdsp files) ~~~
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

  fractionalDelay delay1;
  fractionalDelay delay2;
  bool x = delay1.init(3); //init for 3 ms delay
  bool y = delay2.init(3); //init for 3 ms delay

37



  oscillator lfo1;
  oscillator lfo2;

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//~~~~~~ CONTROLLER MODULE CLASS DEFINITIONS ~~~~~~
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// Define the controllerModule functions declared in set_module.h
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void controller_module::init()  //effect module class initialization
 {
  name = "Stereo Chorus";
  inputMode = IM_LR;   // IM_LR or IM_LMIC

  // Set up pin Modes for the switches and LEDs
  // For mode details, see controltask() and buttontask() in task.cpp
  pinMode(LED1, OUTPUT);
  pinMode(LED2, OUTPUT);
  pinMode(KEY1, INPUT_PULLUP);  //internal pullup
  pinMode(KEY2, INPUT_PULLUP);         
 
  //setting up the buttons
  button[0].mode = BM_MOMENTARY;
  button[0].pin = KEY1;
  button[2].mode = BM_MOMENTARY;
  button[2].pin = KEY2;

  //add gain control
  control[0].name = "Rate";
  control[0].mode = CM_POT;
  control[0].levelCount = 128;
  control[0].pin = POT1;

  //add range control
  control[1].name = "Depth";
  control[1].mode = CM_POT;
  control[1].levelCount = 128;
  control[1].pin = POT2;

  control[2].name = "F/P Diff";
  control[2].mode = CM_POT;
  control[2].levelCount = 128;
  control[2].pin = POT3;

  control[3].name = "Input Mode";
  control[3].mode = CM_SELECTOR;
  control[3].levelCount = 2;  //0:mono 1:stereo
  control[3].pin = POT4;

  control[4].name = "Sync Mode";
  control[4].mode = CM_SELECTOR;
  control[4].levelCount = 2;
  control[4].pin = POT5;

  freq=5;
  depth=0.5;
  beatFrequency=2.5;
  stereo = 1;
  asynch = 1;

38



  lfo1.setFrequency(freq);
  lfo2.setFrequency(freq+beatFrequency);
 }
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void controller_module::onButtonChange(int buttonIndex)
{
  switch(buttonIndex)
  {
    case 0: //main button state has changed
    {
      if(button[0].value) //if effect is activated
      {
        codec.analogBypass(false);
        //codec.DACmute(0);
        digitalWrite(LED1, HIGH);
      }
      else //if effect is bypassed
      {
        codec.analogBypass(true); 
        //codec.DACmute(1);
        digitalWrite(LED1, LOW);
      }
      break;
    }
    case 1: //the button[1] state has changed
    {
      if(button[1].value) // just test LED and Switch
      {digitalWrite(LED2, HIGH);}
      else 
      {digitalWrite(LED2, LOW);}
      break;
    }
  }
}
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
void controller_module::onControlChange(int controlIndex)
{
  switch(controlIndex)
  {
    case 0: //rate
    {
      freq = 0.5 + 10 * (float)control[0].value/127.0;
      lfo1.setFrequency(freq);
      lfo2.setFrequency(freq + beatFrequency);
      break;
    }
    case 1:  //depth
    {
      depth = 1.49 * (float)control[1].value/127.0;
      break;
    }
    case 2:  //phase or frequency difference
    {
      beatFrequency = 5 * (float)control[2].value/127.0;
      phaseDiff = (float)control[2].value;
      lfo2.setFrequency(freq + beatFrequency);
      break;
    }
    case 3:  //depth
    {

39



      stereo = (bool)control[3].value;
      break;
    }
    case 4:  //depth
    {
      asynch = (bool)control[4].value;
      break;
    }
 }
}

The first thing accomplished in the set_module.cpp file is the creation of instances for 
all the Classes used in the Effect.  A pointer to myPedal is created, the main instance 
object of the controller_module child class.  delay1 and delay2 are instance objects of
the fractionalDelay DSP class.  lfo1 and lfo2 (low frequency oscillators) are instance 
objects of the oscillator DSP class.  Both delay instances are initialized with 
delay1.init(3) and delay2.init(3).  This will create buffers that hold 3 milliseconds of 
samples given the defined SAMPLE_RATE.  The number of samples in buffer = 
(samples per second) * (0.003 seconds)). These init( ) methods return boolean true if 
the buffer build was successful.

Next, the controller_module child init( ) method is defined, to be executed later in the
main loop of main.cpp with the line  myPedal->init( ).  Here pinModes are set up for 
two switches and two LEDs. Then the control properties required for two switches and 
five pots are configured.  Finally, all the new variables used to hold the pot and switch 
values are defined and given initial values.  At this point we can also assign some of 
these variables to the inputs of some DSP methods. The setFrequency( ) method of the
lfo1 oscillator class object will get its frequency from the variable freq.  The other low
frequency oscillator, lfo2, will get a slightly higher frequency, freq+beatFrequency.

One pushbutton is set up in the controller_module method onButtonChange( ) to 
either enable the Chorus Effect or bypass it and indicate which with an LED.  Another 
switch is just tested with an LED.

The action of 5 pots are configured in the controller_module method 
onControlChange( ).  Most of them just transfer the pot value to one of the variables 
defined above after a bit of mathematical adjustments.  These variable values will then 
be used in the main effects code loop.  A couple of the pot values are used right away 
to set the frequency of the low frequency oscillator objects using the oscillator class 
setFrequency( ) method. 

The only Effect code left to discuss now is found in the while( ) loop within main.cpp:

while(1)
{   
  i2s_read(I2S_NUM_0, rxbuf, FRAMELENGTH*4, &readsize, 20);

40



  for (int i=0; i<(FRAMELENGTH); i+=2) 
  { 
    rxl = (float) (rxbuf[i] >> 8) ;   
    rxr = (float) (rxbuf[i+1] >> 8) ; 

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    //~~~~~~~~~stereoChorus Processing~~~~~~~~~~~~~
    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    delay1.write(rxl);
    delay2.write(rxr); //write anyway, no matter it's stereo or mono input
      
    lfo1.update();
    lfo2.update();
    float dt1 = (1 + lfo1.getOutput())* myPedal->depth;
    float dt2;
    if(myPedal->asynch == 0) //asynchronous
      dt2 = (1 + lfo2.getOutput())* myPedal->depth;
    else  //synchronous
      dt2 = (1 + lfo1.getOutput(myPedal->phaseDiff))* myPedal->depth;

    txl = (0.7 * rxl) + (0.7 * delay1.read(dt1));
    if(myPedal->stereo) //if stereo input
      txr = (0.7 * rxr) + (0.7 * delay2.read(dt2));
    else //if mono
      txr = (0.7 * rxl) + (0.7 * delay1.read(dt2));

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    txbuf[i]   = ((int32_t) txl) << 8 ; 
    txbuf[i+1] = ((int32_t) txr) << 8 ;
  }

  i2s_write(I2S_NUM_0, txbuf, FRAMELENGTH*4, &readsize, 20);

} 

The code framing the middle stereoChorus Processing should be familiar. It is exactly 
the same code used in the 24-bit sampling gainDoubler.  For 16-bit sampling copy the 
code found in the 16-bit gainDoubler.  Just be sure to set BITS_PER_SAMPLE = 16, 
and set up the rxbuf and txbuf with int16_t elements in both places where they are 
declared and defined. 

A general description of the stereoChorus Effect code is given here:  

The code first loads the input signal samples into the two circular delay buffers.  The 
index, dt1 and dt2, into each of these delay buffers determines the amount of delay. 
The two low frequency oscillator outputs multiplied by the depth control are applied 
to the two delay buffer indices. This results in an oscillating amount of delay in the two
delay lines, one oscillating a bit faster than the other.  Finally, the output samples are 
generated as an equal mix of the original signal samples and the delayed samples, the 
left channel given a different delay from the right.  

41



One if/else section sets up a stereo or mono output depending on the boolean value 
"stereo".  Another if/else section sets up a different dt2 delay index calculation 
depending on the boolean value "asynch".  

Stereo Chorus with System Monitor
When working with more involved signal processing it is sometimes useful to check 
on the CPU load using the System Monitor.  CPU load is tracked using the group of 
"tick" variables declared in set_settings.h and defined in task.cpp.  These must be 
carefully arranged around the main loop in main.cpp.  An example of this applied to 
the 24-bit sampled stereoChorus Effect is shown below.

void loop() 
{
  //leave the main loop dedicated only to the I2S audio task

  size_t readsize = 0
  int32_t rxbuf[FRAMELENGTH], txbuf[FRAMELENGTH]; 
  float rxl, rxr, txl, txr;  

  myPedal->init();
  taskSetup();

  //################ get ticks ################################
  usedticks_start = xthal_get_ccount();
  availableticks_start = xthal_get_ccount();
  
  while(1){   //signal processing loop

  //############### initialize ticks for sysmon ###############
  availableticks_end = xthal_get_ccount();
  availableticks = availableticks_end - availableticks_start;
  availableticks_start = availableticks_end;

  i2s_read(I2S_NUM_0, rxbuf, FRAMELENGTH*4, &readsize, 20);

  //########### used-tick counter starting point ##############
  usedticks_start = xthal_get_ccount();
  
  for (int i=0; i<(FRAMELENGTH); i+=2) {  
    
    rxl = (float) (rxbuf[i] >> 8) ;   
    rxr = (float) (rxbuf[i+1] >> 8) ; 

    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    //~~~~~~~~~stereoChorus Processing~~~~~~~~~~~~~
    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    delay1.write(rxl);
    delay2.write(rxr); //write anyway, no matter it's stereo or mono input
      
    lfo1.update();
    lfo2.update();

42



    float dt1 = (1 + lfo1.getOutput())* myPedal->depth;
    float dt2;
    if(myPedal->asynch == 0) //asynchronous
      dt2 = (1 + lfo2.getOutput())* myPedal->depth;
    else  //synchronous
      dt2 = (1 + lfo1.getOutput(myPedal->phaseDiff))* myPedal->depth;

    txl = (0.7 * rxl) + (0.7 * delay1.read(dt1));
    if(myPedal->stereo) //if stereo input
      txr = (0.7 * rxr) + (0.7 * delay2.read(dt2));
    else //if mono
      txr = (0.7 * rxl) + (0.7 * delay1.read(dt2));
    //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    txbuf[i]   = ((int32_t) txl) << 8 ; 
    txbuf[i+1] = ((int32_t) txr) << 8 ;
  }

  //############### used-tick counter end point ####################
  usedticks_end = xthal_get_ccount();
  usedticks = usedticks_end - usedticks_start;
  processedframe++;

  i2s_write(I2S_NUM_0, txbuf, FRAMELENGTH*4, &readsize, 20);

} // End of while(1) loop
} // End of Main Loop

Be sure to uncomment runSystemMonitor( ); in the setup( ) section of main.cpp. Sur-
prisingly enough the System Monitor does not seem to affect the audio output stream.
The sysmon_task( ) is placed in Core 1 along with the controltask( ) and buttontask( )
and is given the lowest priority, 0 or idle. It seems to update only around once per
second.

Summary

To complete this description of the Codec Software Package for the ESP32 here is a 
quick review of its files :

1.  codec   --   The driver for a specific codec.
2.  controller_mod  --   A base class container for all possible analog and 

digital controllers such as switches and potentiometers.
3.  task  --  Task functions for polling the analog and digital controllers.  

Task functions for System Monitoring.  A setup function to place 
and startup the tasks.

4.  bsdsp  --  Digital Signal Processing class tools for the effects.
5.  set_settings, set_codec, set_module    --   Overall settings for the 

various package components.

43



6.  main  --   The main entry file that pulls it all together with the Effect 
Processing code.

44


